Thermal Engineering

, Volume 64, Issue 4, pp 258–264 | Cite as

Numerical investigation of the staged gasification of wet wood

  • I. G. DonskoiEmail author
  • A. N. Kozlov
  • D. A. Svishchev
  • V. A. Shamanskii
Energy Conservation, New and Renewable Energy Sources


Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80–85%, which is 10–20% higher that in conventional single-stage processes.


staged gasification wood biomass. mathematical modeling regime maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Pereira, J. N. da Silva, J. L. de Oliveira, and C. S. Machado, “Sustainable energy: A review of gasification technologies,” Renewable Sustainable Energy Rev. 16, 4753–4762 (2012).CrossRefGoogle Scholar
  2. 2.
    C. Erlich and T. H. Fransson, “Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study,” Appl. Energy 88, 899–908 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Gómez-Barea and B. Leckner, “Modeling of biomass gasification in fluidized bed,” Prog. Energy Combust. Sci. 36, 444–509 (2010).CrossRefGoogle Scholar
  4. 4.
    J. J. Hernández, G. Aranda, J. Barba, and J. M. Mendoza, “Effect of steam content in the air–steam flow on biomass entrained flow gasification,” Fuel Process. Technol. 99, 43–55 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Ståhl, K. Granström, J. Berghel, and R. Renström “Industrial processes for biomass drying and their effects on the quality properties of wood pellets,” Biomass Bioenergy 27, 621–628 (2004).CrossRefGoogle Scholar
  6. 6.
    M. G. Montiano, A. M. Fernández, E. Díaz-Faes, and C. Barriocanal, “Tar from biomass/coal-containing briquettes. Evaluation of PAHs,” Fuel 154, 261–267 (2015).CrossRefGoogle Scholar
  7. 7.
    A.-G. Collot, Y. Zhuo, D. R. Dugwell, and R. Kandiyoti, “Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors,” Fuel 78, 667–679 (1999).CrossRefGoogle Scholar
  8. 8.
    M. Asadullah, T. Miyazawa, S. Ito, K. Kunimori, M. Yamada, and K. Tomishige, “Catalyst development for the gasification of biomass in the dual-bed gasifier,” Appl. Catal., A 255, 169–180 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Ran and C. Li, “High temperature gasification of woody biomass using regenerative gasifier,” Fuel Process. Technol. 99, 90–96 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Han and H. Kim, “The reduction and control technology of tar during biomass gasification/pyrolysis: An overview,” Renewable Sustainable Energy Rev. 12, 397–416 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Asadullah, “Barriers of commercial power generation using biomass gasification gas: A review,” Renewable and Sustainable Energy Rev. 29, 201–215 (2014).CrossRefGoogle Scholar
  12. 12.
    U. Henriksen, J. Ahrenfeldt, T. K. Jensen, B. Gøbel, J. D. Bentzen, C. Hindsgaul, and L. H. Sørensen, “The design, construction and operation of a 75 kW twostage gasifier,” Energy 31, 1542–1553 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. Wang, T. He, J. Qin, J. Wu, J. Li, Z. Zi, G. Liu, J. Wu, and L. Sun, “Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier,” Fuel 150, 386–393 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Van De Steene, J. P. Tagutchou, F. Mermoud, E. Martin, and S. Salvador, “A new experimental Continuous Fixed Bed Reactor to characterise wood char gasification,” Fuel 89, 3320–3329 (2010).CrossRefGoogle Scholar
  15. 15.
    Fixed Bed Gasification Technologies, Ed. by P. K. Senachin (Altaiskii Dom Pechati, Barnaul, 2009).Google Scholar
  16. 16.
    A. Gómez-Barea, B. Leckner, A. V. Perales, S. Nilsson, and D. F. Cano, “Improving the performance of fluidized bed biomass/waste gasifiers for distributed electricity: A new three-stage gasification system,” Appl. Therm. Eng. 50, 1453–1462 (2013).CrossRefGoogle Scholar
  17. 17.
    B. Gøbel, U. Henriksen, T. K. Jensen, B. Qvale, and N. Houbak, “The development of a computer model for a fixed bed gasifier and its use for optimization and control,” Bioresour. Technol. 98, 2043–2052 (2007).CrossRefGoogle Scholar
  18. 18.
    L. Gerun, M. Paraschiv, R. Vîjeu, J. Belettre, M. Tazerout, B. Gøbel, and U. Henriksen, “Numerical investigation of the partial oxidation in a two-stage downdraft gasifier,” Fuel 87, 1383–1393 (2008).CrossRefGoogle Scholar
  19. 19.
    A. V. Keiko, D. A. Svishchev, A. N. Kozlov, I. G. Donskoy, and A. F. Ryzhkov, “Modeling a solid-fuel staged gasification process,” in Proc. 11th Int. Conf. on Sustainable Energy Technologies (SET-2012), Vancouver, Canada, Sept. 2–5, 2012.Google Scholar
  20. 20.
    I. G. Donskoi, “Mathematical modeling of the fixed bed staged coal gasification,” Gorenie Plazmokhim. 12, 376–382 (2013).Google Scholar
  21. 21.
    A. Kozlov, D. Svishchev, I. Donskoy, and A. V. Keiko, “Thermal analysis in numerical thermodynamic modeling of solid fuel conversion,” J. Therm. Anal. Calorim. 109, 1311–1317 (2012).CrossRefGoogle Scholar
  22. 22.
    I. G. Donskoi, A. V. Keiko, A. N. Kozlov, D. A. Svishchev, and V. A. Shamanskii, “Calculation of the fixed bed coal gasification regimes by the use of thermodynamic model with macrokinetic constraints,” Therm. Eng. 12, 904–909 (2013). doi 10.1134/S0040601513120069CrossRefGoogle Scholar
  23. 23.
    I. G. Donskoy, A. V. Keiko, A. N. Kozlov, V. A. Shamansky, and D. A. Svishchev, “Mathematical modeling of the fixed-bed staged biomass gasification process,” Renewable Bioresour. 4 (1), 1–6 (2016). doi 10.7243/2052-6237-4-1CrossRefGoogle Scholar
  24. 24.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1995).Google Scholar
  25. 25.
    X. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, and J. R. Kim, “Biomass gasification in a circulating fluidized bed,” Biomass Bioenergy 26, 171–193 (2004).CrossRefGoogle Scholar
  26. 26.
    N. Jand, V. Brandani, and P. U. Foscolo, “Thermodynamic limits and actual product yields and compositions in biomass gasification processes,” Ind. Eng. Chem. Res. 45, 834–843 (2006).CrossRefGoogle Scholar
  27. 27.
    P. Klimantos, N. Koukouzas, A. Katsiadakis, and E. Kakaras, “Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment,” Energy 34, 708–714 (2009).CrossRefGoogle Scholar
  28. 28.
    I. Hannula and E. Kurkela, “A semi-empirical model for pressurised air-blown fluidised-bed gasification of biomass,” Bioresour. Technol. 101, 4608–4615 (2010).CrossRefGoogle Scholar
  29. 29.
    A. Gómez-Barea and B. Leckner, “Estimation of gas composition and char conversion in a fluidized bed biomass gasifier,” Fuel 107, 419–431 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Kangas, I. Hannula, P. Koukkari, and M. Hupa, “Modelling super-equilibrium in biomass gasification with the constrained Gibbs energy method,” Fuel 129, 86–94 (2014).CrossRefGoogle Scholar
  31. 31.
    Y. Lim and U.-D. Lee, “Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds,” Fuel Process. Technol. 128, 199–210 (2014).CrossRefGoogle Scholar
  32. 32.
    N. S. Barman, S. Ghosh, and S. De, “Gasification of biomass in a fixed bed downdraft gasifier — A realistic model including tar,” Bioresour. Technol. 107, 505–511 (2012).CrossRefGoogle Scholar
  33. 33.
    M. Puig-Arnavat, J. C. Bruno, and A. Coronas, “Modified thermodynamic equilibrium model for biomass gasification: A study of the influence of operating conditions,” Energy Fuels 26, 1385–1394 (2012).CrossRefGoogle Scholar
  34. 34.
    M. Simone, F. Barontini, C. Nicolella, and L. Tognotti, “Assessment of syngas composition variability in a pilotscale downdraft biomass gasifier by an extended equilibrium model,” Bioresour. Technol. 140, 43–52 (2013).CrossRefGoogle Scholar
  35. 35.
    T. D. B. Nguyen, S. I. Ngo, Y.-I. Lim, J. W. Lee, Y.-D. Lee, and B.-H. Song, “Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed,” Energy Convers. Manage. 54, 100–112 (2012).CrossRefGoogle Scholar
  36. 36.
    D. A. Svishchev, A. N. Kozlov, I. G. Donskoy, and A. F. Ryzhkov, “A semi-empirical approach to the thermodynamic analysis of downdraft gasification,” Fuel 168, 91–106 (2016).CrossRefGoogle Scholar
  37. 37.
    C. Di Blasi, “Modeling chemical and physical processes of wood and biomass pyrolysis,” Prog. Energy Combust. Sci. 34, 47–90 (2008).CrossRefGoogle Scholar
  38. 38.
    D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gómez-Barea, “Characterization and prediction of biomass pyrolysis products,” Progress in Energy and Combustion Science 37, 611–630 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. G. Donskoi
    • 1
    Email author
  • A. N. Kozlov
    • 2
  • D. A. Svishchev
    • 2
  • V. A. Shamanskii
    • 2
  1. 1.Kutateladze Thermophysics Institute, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Melentiev Energy Systems Institute, Siberian BranchRussian Academy of Sciences (ISEM SO RAN)IrkutskRussia

Personalised recommendations