Thermal Engineering

, 58:691 | Cite as

Using fundamental equations of state for calculating the thermodynamic properties of normal undecane

  • I. S. Aleksandrov
  • A. A. Gerasimov
  • B. A. Grigor’ev


The modern fundamental equations of state are analyzed together with methods of applying them for calculating the thermodynamic properties of technically important substances. Two kinds of fundamental equations of state (with 12 and 14 terms) are obtained for normal undecane (n-undecane), which is a technically important organic working substance.


  1. 1.
    R. Span, Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000).Google Scholar
  2. 2.
    D. S. Kurumov, The Thermal Properties of n-Alkanes and Fractions of Mangyshlak Petroleum in Liquid and Gaseous States, Doctoral Dissertation in Technical Sciences (Grozny Petroleum Institute, Grozny, 1991).Google Scholar
  3. 3.
    K. N. Marsh, R. C. Wilhoit, M. Frenkel, and D. Yin, TRC Thermodynamic Properties of Substances in the Ideal Gas State (Thermodynamics Research Center, 1994).Google Scholar
  4. 4.
    L. Sun and J. E. Ely, “Universal Equation of State for Engineering Application: Algorithm and Application,” Fluid Phase Equilibria 222–223, 107–118 (2004).CrossRefGoogle Scholar
  5. 5.
    R. Fletcher, A Modified Marquardt Subroutine for Non-Linear Least Squares, (Atomic Energy Research Establishment, Harwell, Berkshire (R.6799), May 1971), pp. 1–24.Google Scholar
  6. 6.
    E. W. Lemmon and R. T. Jacobsen, “A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125),” J. Phys. Chem. Ref. Data 34(1), 6–108 (2005).CrossRefGoogle Scholar
  7. 7.
    F. Krafft, “On Nineteen Higher Normal Paraffins and a Simple Volume Law for Liquids That Form Drops. I,” Ber. Dtsch. Chem. Ges. 15(1), 1687–1711 (1882).CrossRefGoogle Scholar
  8. 8.
    C. Viton, M. Chavret, E. Behar, and J. Jose, “Vapor Pressure of Normal Alkanes from Decane to Isosane at Temperatures from 244 K to 469 K and Pressures from 0.4 Pa to 164 kPa,” Int. Electron. J. Phys. Chem. Data 2, 215–224 (1996).Google Scholar
  9. 9.
    I. S. Aleksandrov, A. A. Gerasimov, and E. B. Grigor’ev, “Evaporation Enthalpy and Saturated Vapor Pressure of C5-C18 n-Alkanes Near the Triple Point,” Obor. Kompl. Nauchno-Tekhn. Progr. Rossii, No. 4, 56–61 (2010).Google Scholar
  10. 10.
    P. A. Chmykhalo, DSSDD (Ukrainian State Standard) 7-2005: The Procedure for Calculating the Saturated Vapor Pressure of n-Alkanes (C 1-C 100 ) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2005).Google Scholar
  11. 11.
    J. S. Stadnicki, “Tonometric Investigations of Binary and Ternary Azeotropes. IV. Binary System Aniline-n-Undecane,” Bull. Acad. Polon. Sci., Ser. Sci. Chem. 10, 299–301 (1962).Google Scholar
  12. 12.
    E. C. Bingham and H. J. Fornwalt, “Chemical Constitution and Association,” J. Rheology 1(4), 372–417 (1930).CrossRefGoogle Scholar
  13. 13.
    R. W. Dornte and C. P. Smyth, “The Dielectric Polarization of Liquids. X. The Polarization and Refraction of the Normal Paraffins,” J. Amer. Chem. Soc. 52, 3546–3552 (1930).CrossRefGoogle Scholar
  14. 14.
    G. Calingaert, H. A. Beatty, R. C. Kuder, and G. W. Thomson, “Homologous Series of Alkanes Density and Its Temperature Coefficient,” Ind. and Eng. Chem. 33(1), 103–106 (1941).CrossRefGoogle Scholar
  15. 15.
    O. R. Quayle, R. A. Day, and G. M. Brown, “A Study of Organic Parachors. VII. A Series of Saturated Hydrocarbons,” J. Amer. Chem. Soc. 66, 938–941 (1944).CrossRefGoogle Scholar
  16. 16.
    A. I. Vogel, “Physical Properties and Chemical Constitution. Part IX. Aliphatic Hydrocarbons,” J. Chem. Soc. 146, 133–139 (1946).CrossRefGoogle Scholar
  17. 17.
    A. K. Doolittle and R. H. Peterson, “Preparation and Physical Properties of a Series of n-Alkanes,”J. Amer. Chem. Soc. 73, 2145–2151 (1951).CrossRefGoogle Scholar
  18. 18.
    A. K. Doolittle, “Specific Volumes of n-Alkanes,” J. Chem. Eng. Data 9(2), 275–279 (1964).CrossRefGoogle Scholar
  19. 19.
    D. L. Camin and F. D. Rossini, “Physical Properties of 14 American Petroleum Institute Research Hydrocarbons, C(9) to C(15),” J. Phys. Chem. 59(11), 1173–1179 (1955).CrossRefGoogle Scholar
  20. 20.
    J. A. Dixon, “Phase Equilibria Molecular Transport Thermodynamics. Part I. Binary Solutions of Saturated Hydrocarbons,” J. Chem. Eng. Data 4(4), 289–294 (1959).CrossRefGoogle Scholar
  21. 21.
    V. G. Ben’kovskii, M. K. Naurusov, T. M. Bog- oslovskaya, and Z. Serikov, “Density of Binary Mixtures of n-Alkanes,” Trans. Inst. Khim. Neft. Prir. Solei, Akad. Nauk Kaz. SSR, No. 1, 16–19 (1970).Google Scholar
  22. 22.
    J. G. Hust and R. E. Schramm, “Density and Crystallinity Measurements of Liquid and Solid n-Undecane, n-Tridecane, and o-Xylene from 200 to 350 K, J. Chem. Eng. Data 21(1), 7–12 (1976).CrossRefGoogle Scholar
  23. 23.
    P. M. Diaz and G. Tardajos, “Isothermal Compressibilities of n-Alkanes and Benzene,” J. Chem. Thermodyn. 10(1), 19–24 (1978).CrossRefGoogle Scholar
  24. 24.
    R. Landau and A. Wuerflinger, “PVT Data of Acetonitrile, Undecane, and Dodecane to 3 kbar and −50°C. Pressure Dependence and Change of Volume, Enthalpy, and Entropy,” Ber. Bunsenges. Phys. Chem. 84, 895–902 (1980).Google Scholar
  25. 25.
    M. Garcia, C. Rey, V. P. Villar, and J. R. Rodrigues, “Excess Volumes of (n-Heptane + n-Undecane) between 288.15 and 308.15 K,” J. Chem. Thermodyn. 18(6), 551–554 (1986).CrossRefGoogle Scholar
  26. 26.
    L. D. Mansker, A. C. Criser, A. Jangkamolkulchai, and K. D. Luks, “The Isothermal Compressibility of n-Paraffin Liquids at Low Pressures,” Chem. Eng. Comm. 57(6), 87–93 (1987).CrossRefGoogle Scholar
  27. 27.
    J. Ortega, J. S. Matos, J. A. Pena, et al., “Isobaric Expansivities of the Binary Mixtures C3H7(OH) + CnH2n + 2 (n = 11, 12) between 288.15 and 318.15 K,” Thermochim. Acta 131(12), 57–64 (1988).CrossRefGoogle Scholar
  28. 28.
    J. Wu, Z. Shan, and A.-F.A. Asfour, “Viscometric Properties of Multicomponent Liquid n-Alkane Systems,” Fluid Phase Equilib. 143(12), 263–274 (1998).CrossRefGoogle Scholar
  29. 29.
    L. M. Casas, A. Tourino, B. Orge, et al., “Thermophysical Properties of Acetone or Methanol + n-Alkane (C9 to C12) Mixtures,” J. Chem. Eng. Data 47(4), 887–893 (2002).CrossRefGoogle Scholar
  30. 30.
    I. S. Aleksandrov and A. A. Gerasimov, “The Thermal Properties of Normal Undecane on the Saturation Line,” in Proceedings of the Seventh International Conference “Innovations in Science and Education-2009,” KGTU, Kaliningrad, 2009, pp. 65–67.Google Scholar
  31. 31.
    H. M. Huffman, G. S. Parks, and M. Barmore, “Thermal Data on Organic Compounds. X. Further Studies on the Heat Capacities, Entropies, and Free Energies of Hydrocarbons,” J. Amer. Chem. Soc. 53(10), 3876–3888 (1931).CrossRefGoogle Scholar
  32. 32.
    H. L. Finke, M. E. Gross, G. Waddington, and H. M. Huffman, “Low-Temperature Thermal Data for the Nine Normal Paraffin Hydrocarbons from Octane to Hexadecane,” J. Amer. Chem. Soc. 76(2), 333–341 (1954).CrossRefGoogle Scholar
  33. 33.
    A. A. Gerasimov, The Caloric Properties of Normal Alkanes and Multicomponent Hydrocarbon Mixtures in Liquid and Gaseous Phases Including the Critical Region, Doctoral Dissertation in Technical Sciences (KGTU, Kaliningrad, 1999).Google Scholar
  34. 34.
    V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds. A Critical Review and Data Compilation (Blackwell Sci. Publ., Oxford, 1985).Google Scholar
  35. 35.
    E. Moravetz, “A Non-Equilibrium Low Vapor Pressure Heat of Vaporization Calorimeter,” Acta Chem. Scand. 22(5), 1509–1531 (1968).CrossRefGoogle Scholar
  36. 36.
    A. Z. Golik and I. I. Ivanova, “The Molecular Structure, Density, Compressibility, and Viscosity of n-Alkanes in Liquid State,” Zh. Fiz. Khim. 36(12), 1768–1770 (1962).Google Scholar
  37. 37.
    Yu. A. Neruchev, V. V. Zotov, and N. F. Otpushchenkov, “Speed of Sound in the Homologous Series of n-Alkanes,” Zh. Fiz. Khim. 43(11), 1597–1599 (1969).Google Scholar
  38. 38.
    Yu. F. Melikhov, “Studying the Temperature and Baric Dependences of Ultrasound Velocity in Polyatomic Liquids,” in Ultrasound and Thermodynamic Properties of Substance (Kursk Gos. Ped. Inst., Kursk, 1985), pp. 81–103.Google Scholar
  39. 39.
    G. Tardajos, M. D. Pena, and E. Aicart, “Speed of Sound in Pure Liquids by a Pulse-Echo-Overlap Method,” J. Chem. Thermodyn. 18(7), 683–689 (1986).CrossRefGoogle Scholar
  40. 40.
    F. Plantier, J.-L. Daridon, B. Lagourette, and C. Boned, “Isoentropic Thermophysical Properties of Pure n-Paraffins as a Function of Temperature and Chain Length,” High Temp. High Press. 32(3), 305–310 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. S. Aleksandrov
    • 1
  • A. A. Gerasimov
    • 1
  • B. A. Grigor’ev
    • 2
  1. 1.Kaliningrad State Technical UniversityKaliningradRussia
  2. 2.Institute for Oil and Gas ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations