Advertisement

Theoretical Foundations of Chemical Engineering

, Volume 53, Issue 5, pp 735–740 | Cite as

Extraction of Iron(III) Chloride Complexes Using the Polypropylene Glycol 425–NaCl–H2O System

  • Yu. A. ZakhodyaevaEmail author
  • I. V. Zinov’eva
  • A. A. Voshkin
Article
  • 15 Downloads

Abstract

The results of experimental investigation of the interphase distribution of iron(III) in an environmentally friendly aqueous two-phase system based on polypropylene glycol with a molecular weight of 425 and sodium chloride have been presented. The mechanism of extraction has been determined, and the quantitative characteristics of the extraction of iron(III) using the system under study have been found.

Keywords:

liquid–liquid extraction iron(III) chloride aqueous two-phase systems green chemistry water-soluble polymers polypropylene glycol 425 

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research and the Moscow Government (project no. 19-33-70011).

NOTATION

A

absorbance

D

distribution coefficient

E

degree of extraction, %

R 2

regression coefficient

λ

wavelength, nm

SUBSCRIPTS AND SUPERSCRIPTS

ini

initial value

eq

equilibrium value

pol.ph

polymer phase

sal.ph

salt phase

REFERENCES

  1. 1.
    Liu, B., Zhang, Y., Lu, M., Su, Z., Li, G., and Jiang, T., Extraction and separation of manganese and iron from ferruginous manganese ores: A review, Miner. Eng., 2019, vol. 131, p. 286.CrossRefGoogle Scholar
  2. 2.
    Ostapenko, P.E., Obogashchenie zheleznykh rud (Concentration of Iron Ores), Moscow: Nedra, 1977.Google Scholar
  3. 3.
    Ma, M., Froth flotation of iron ores, Int. J. Min. Eng. Miner. Process., 2012, vol. 1, no. 2, p. 56.CrossRefGoogle Scholar
  4. 4.
    Zolotov, Yu.A., Khol’kin, A.I., Pashkov, G.L., Fleitlikh, I.Yu., Belova, V.V., Sergeev, V.V., and Voshkin, A.A., Extraction of iron from industrial solutions, Khim. Tekhnol., 2002, no. 7, p. 14.Google Scholar
  5. 5.
    Wojciechowska, I., Wieszczycka, K., Wojciechowska, A., and Aksamitowski, P., Ether derivatives – Efficient Fe(III) extractants from HCl solution, Sep. Purif. Technol., 2019, vol. 209, p. 756.CrossRefGoogle Scholar
  6. 6.
    Mishra, R.K., Rout, P.C., Sarangi, K., and Nathsarma, K.C., A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy, 2011, vol. 104, p. 298.CrossRefGoogle Scholar
  7. 7.
    Kul, M. and Oskay, K.O., Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction, Hydrometallurgy, 2015, vol. 155, p. 153.CrossRefGoogle Scholar
  8. 8.
    Azizitorghabeh, A., Rashchi, F., and Babakhani, A., Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP, Sep. Purif. Technol., 2016, vol. 171, p. 197.CrossRefGoogle Scholar
  9. 9.
    Sayar, N., Filiz, M., and Sayar, A., Extraction of Zn(II) from aqueous hydrochloric acid solutions into Alamine 336-m-xylene systems. Modelling considerations to predict optimum operational conditions, Hydrometallurgy, 2007, vol. 86, nos. 1–2, p. 27.CrossRefGoogle Scholar
  10. 10.
    Saji, J. and Reddy, M.L.P., Liquid–liquid extraction and separation of iron(III) from titania wastes using TBP-MIBK mixed solvent system, Hydrometallurgy, 2001, vol. 61, p. 81.CrossRefGoogle Scholar
  11. 11.
    Reddy, B.R. and Sarma, P.V.R.B., Extraction of iron(III) at macro-level concentrations using TBP MIBK and their mixtures, Hydrometallurgy, 1996, vol. 43, p. 299.CrossRefGoogle Scholar
  12. 12.
    Zhang, G., Chen, D., Wei, G., Zhao, H., Wang, L., Qi, T., Meng, F., and Meng, L., Extraction of iron(III) from chloride leaching liquor with high acidity using tri-n-butyl phosphate and synergistic extraction combined with methyl isobutyl ketone, Sep. Purif. Technol., 2015, vol. 150, p. 132.CrossRefGoogle Scholar
  13. 13.
    Saji, J., Rao, T.P., Iyer, C.S.P., and Reddy, M.L.P., Extraction of iron(III) from acidic chloride solutions by Cyanex 923, Hydrometallurgy, 1998, vol. 49, p. 289.CrossRefGoogle Scholar
  14. 14.
    Mishra, R.K., Rout, P.C., Sarangi, K., and Nathsarma, K.C., Solvent extraction of Fe(III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336, Hydrometallurgy, 2011, vol. 108, p. 93.CrossRefGoogle Scholar
  15. 15.
    Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of iron(III) by binary extractants based on quaternary ammonium bases and organic acids, Russ. J. Inorg. Chem., 2003, vol. 48, no. 4, pp. 608–613.Google Scholar
  16. 16.
    Voshkin, A.A., Belova, V.V., and Zakhodyaeva, Yu.A., Iron extraction with di(2-ethylhexyl)dithiophosphoric acid and a binary extractant based on it, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, p. 387.CrossRefGoogle Scholar
  17. 17.
    Belova, V.V., Voshkin, A.A., and Khol’kin, A.I., Liquid–liquid distribution of metals in systems with trioctylmethylammonium dinonyl naphthalenesulfonate, Theor. Found. Chem. Eng., 2011, vol. 45, p. 764.CrossRefGoogle Scholar
  18. 18.
    Leite, D.S., Carvalho, P.L.G., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Hydrometallurgical recovery of Zn(II) and Mn(II) from alkaline batteries waste employing aqueous two-phase system, Sep. Purif. Technol., 2019, vol. 210, p. 327.CrossRefGoogle Scholar
  19. 19.
    Leite, D.S., Carvalho, P.L.G., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems, Hydrometallurgy, 2017, vol. 169, p. 245.CrossRefGoogle Scholar
  20. 20.
    Zakhodyaeva, Yu.A., Izyumova, K.V., Solov’eva, M.S., and Voshkin, A.A., Extraction separation of the components of leach liquors of batteries, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 883–887.  https://doi.org/10.1134/S0040579517050244 CrossRefGoogle Scholar
  21. 21.
    Bulgariu, L. and Bulgariu, D., Extraction of gold(III) from chloride media in aqueous polyethylene glycol-based two-phase system, Sep. Purif. Technol., 2011, vol. 80, p. 620.CrossRefGoogle Scholar
  22. 22.
    Shkinev, V.M., Zakhodyaeva, Yu.A., Dzhenloda, R.Kh., and Voshkin, A.A., Synthesis of magnetic nanoparticles of iron oxide at the interface in the polyethylene glycol-ammonium sulfate-water extraction system, Mendeleev Commun., 2017, vol. 27, no. 5, p. 485.CrossRefGoogle Scholar
  23. 23.
    Karmakar, R. and Sen, K., Aqueous biphasic extraction of metal ions: An alternative technology for metal regeneration, J. Mol. Liq., 2019, vol. 273, p. 231.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. A. Zakhodyaeva
    • 1
    Email author
  • I. V. Zinov’eva
    • 1
  • A. A. Voshkin
    • 1
    • 2
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.MIREA - Russian Technological UniversityMoscowRussia

Personalised recommendations