Advertisement

A Heat Electropower Ministation Based on Both a Reactor for Air Methane Conversion and an Electrochemical Generator

  • A. M. Dubinin
  • S. E. ShchekleinEmail author
Article

Abstract—

Synthesis gas for an electrochemical generator is produced in a thermochemical generator with autothermal air conversion of methane (natural gas). From the heat balances of the reactor, the batteries of solid oxide fuel-cell elements, and a boiler-utilizer designed for heating the primary and secondary cathodе air and methane, the following are calculated: temperature at the anode, the electromotive force of the cell element, the electrical coefficient of the efficiency factor for the gross-electrochemical generator, the fraction of hydrogen oxidized in the anode of solid oxide fuel-cell elements, and the cost per unit for production of electric and heat energy.

Keywords:

electrochemical generator thermochemical reactor efficiency factor electromotive force stoichiometry 

Notes

REFERENCES

  1. 1.
    Devins, D.W., Energy: Its Physical Impact on the Environment, New York: Wiley, 1982.Google Scholar
  2. 2.
    Longwell, J.P., Rubin, E.S., and Wilson, J., Coal: Energy for the future, Prog. Energy Combust. Sci., 1995, vol. 21, no. 4, pp. 269–360.  https://doi.org/10.1016/0360-1285(95)00007-0 CrossRefGoogle Scholar
  3. 3.
    Dubinin, A.M., Tuponogov, V.G., and Ikonnikov, I.S., Modeling the process of producing hydrogen from methane, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, pp. 697–701.  https://doi.org/10.1134/S0040579513050163 CrossRefGoogle Scholar
  4. 4.
    Takeguchi, T., Kani, Y., Yano, T., Kikuchi, R., Eguchi, K., Tsujimoto, K., Uchida, Y., Ueno, A., Omoshiki, K., and Aizawa, M., Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources, 2012, vol. 112, no. 2, pp. 588–595.  https://doi.org/10.1016/S0378-7753(02)00471-8 CrossRefGoogle Scholar
  5. 5.
    Halinen, M., Thomann, O., and Kiviaho, J., Effect of anode off-gas recycling on reforming of natural gas for solid oxide fuel cell systems, Fuel Cells (Weinheim, Ger.), 2012, vol. 12, no. 5, pp. 754–760.  https://doi.org/10.1002/fuce.201200047
  6. 6.
    Dubinin, A.M., Shcheklein, S.E., Tuponogov, V.G., and Labintsev, E.S., Autothermal air methane conversion, Al’tern. Energ. Ekol., 2016, nos. 15–18, p. 86.Google Scholar
  7. 7.
    Peters, R., Deja, R., Blum, L., Pennanen, J., Kiviaho, J., and Hakala, T., Analysis of solid oxide fuel cell system concepts with anode recycling, Int. J. Hydrogen Energy, 2013, vol. 38, no. 16, pp. 6809–6820.  https://doi.org/10.1016/j.ijhydene.2013.03.110 CrossRefGoogle Scholar
  8. 8.
    Munts, V.A., Volkova, Yu.V., Plotnikov, N.S., Dubinin, A.M., Tuponogov, V.G., and Chernishev, V.A., Studying the characteristics of a 5kW power installation on solid-oxide fuel cells with steam reforming of natural gas, Therm. Eng., 2015, vol. 62, no. 11, pp. 779–784.  https://doi.org/10.1134/S004060151511004X CrossRefGoogle Scholar
  9. 9.
    Korovin, N.A., Toplivnye elementy i elektrokhimicheskie energoustanovki (Fuel Cells and Electrochemical Power Plants), Moscow: Mosk. Energ. Inst., 2005.Google Scholar
  10. 10.
    Baskakov, A.P., Dubinin, A.M., Tuponogov, V.G., and Filippov, D.V., On the mechanism of steam coal gasification, Prom. Energ., 2008, no. 4, p. 40.Google Scholar
  11. 11.
    Baskakov, A.P. and Volkova, Yu.V., Fiziko-khimicheskie osnovy teplovykh protsessov (Physicochemical Fundamentals of Thermal Processes), Moscow: Teplotekhnik, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations