Migration of a single gas bubble in water during the formation of stable gas-hydrate crust on its surface

  • V. Sh. Shagapov
  • A. S. Chiglintseva
  • A. A. Rusinov
  • B. I. Tazetdinov


A theoretical model of gas-hydrate formation during the migration of the methane bubble in water under thermobaric conditions of hydrate stability has been considered. Numeric solutions were obtained and analyzed for two limiting cases when the rate of formation of the hydrate crust on bubble surface is constrained by the intensity of heat removal, which is released during hydrate-formation process by the surrounding water or the diffusive resistance of gas hydrate crust against the transfer of hydrate-forming components. A comparative analysis of the numeric results with the experimental data showed that the diffusive transfer of hydrate-forming components through the crust most adequately described the process of hydrate-particle growth that was observed in experiments during the ascent of methane particles in seawater. The conditions of the best agreement between the theoretical and experimental data on changing of radius of gas-hydrate particle allowed numeric estimates to be obtained for values of the reduced coefficient of gas and water diffusion through the hydrate crust.


gas-hydrate particle hydrate-forming component methane bubble hydrate crust intensity heat removal diffusive resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sauter, E.J., Muyakshin, S.I., Charlouc, J.-L., Schlütera, M., Boetius, A., Jerosch, K., Damm, E., Foucher, J.P., and Klages, M., Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles, Earth Planet. Sci. Lett., 2006, vol. 243, nos. 2–3, p. 354.CrossRefGoogle Scholar
  2. 2.
    Maksimov, A.O. and Sosedko, E.V., Dynamics of sea bubbles covered by a hydrate skin, Proc. 16th Session of the Russ. Acoustical Society, Moscow, 2005, p. 459.Google Scholar
  3. 3.
    Haeckel, M., Suess, E., Wallmann, K., and Rickert, D., Rising methane gas bubbles form massive hydrate layers at the seafloor, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 21, p. 4335.CrossRefGoogle Scholar
  4. 4.
    Egorov, A.V., Nigmatulin, R.I., and Rozhkov, Transformation of deep-sea methane bubbles into solid hydrates, Preprint of Inst. of Applied Mechanics, Russ. Acad. Sci., 2013, no. 1038.Google Scholar
  5. 5.
    Greinert, J., Artemov, Yu., Egorov, V., de Batist, M., and McGinnis, D.F., 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability, Earth Planet. Sci. Lett., 2006, vol. 244, nos. 1–2, p. 1.CrossRefGoogle Scholar
  6. 6.
    Römer, M., Sahling, H., Pape, T., Feseker, T., Wintersteller, P., Bohrmann, G., and Bahr, A., Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea—the Kerch seep area, Mar. Geol., 2012, vols. 319–322, p. 57.CrossRefGoogle Scholar
  7. 7.
    Römer, M., Sahling, H., Spieß, V., and Bohrmann, G., The role of gas bubble emissions at deep-water cold seep systems: an example from the Makran continental margin, offshore Pakistan, Proc. 7th Int. Conf. on Gas Hydrates (ICGH 2011), Edinburgh, 2011.Google Scholar
  8. 8.
    Skarke, A., Ruppel, C., Kodis, M., Brothers, D., and Lobecker, E., Widespread methane leakage from the sea floor on the northern US Atlantic margin, Nat. Geosci., 2014, vol. 7, no. 9, p. 657. doi 10.1038/ngeo2232CrossRefGoogle Scholar
  9. 9.
    Gentz, T., Damm, E., von Deimling, J.S., Mau, S., McGinnis, D.F., and Schlüter, M., A water column study of methane around gas flares located at the West Spitsbergen continental margin, Cont. Shelf Res., 2014, vol. 72, p. 107. doi 10.1016/j.csr.2013.07.013CrossRefGoogle Scholar
  10. 10.
    Rehder, G., Brewer, P., Peltzer, E. and Friederich, G., Enhanced lifetime of methane bubble streams within the deep ocean, Geophys. Res. Lett., 2002, vol. 29, no. 15, p. 21. doi 10.1029/2001GL013966CrossRefGoogle Scholar
  11. 11.
    Smith, A.J., Mienert, J., Bünz, S., and Greinert, J., Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard, Geochem. Geophys. Geosyst., 2014, vol. 15, no. 5, p. 1945. doi 10.1002/2013GC005179CrossRefGoogle Scholar
  12. 12.
    McGinnis, D.F., Greinert, J., Artemov, Yu., Beaubien, S.E., and Wuest, A., Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere?, J. Geophys. Res. Oceans, 2006, vol. 111, no. C9, C09007. doi 10.1029/2005JC003183Google Scholar
  13. 13.
    Vlasov, V.A., Phenomenological diffusion theory of formation of gas hydrate from ice powder, Theor. Found. Chem. Eng., 2012, vol. 46, no. 6, p. 576.CrossRefGoogle Scholar
  14. 14.
    Istomin, V.A. and Yakushev, V.S., Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in Natural Conditions), Miscow: Nedra, 1992.Google Scholar
  15. 15.
    Mel’nikov, V.P. and Nesterov, A.N., Application of surfactants in the transport and storage of natural gas in the form of gas hydrates, Fundamental’nye problemy razrabotki neftegazivykh mestorozhdenii, dobychi i transportirovki uglevodorodnogo syr’a: Materialy mezhd. konf. (Proc. Int. Conf. on Fundamental Problems in Oil and Gas Field Development and Extraction and Transportation of Hydrocarbon Raw Materials), Moscow, 2004, p. 98.Google Scholar
  16. 16.
    Nesterov, A.N., Application of surfactants for intensification of hydrate formation processes in gas transportation and storage, in Sovremennoe sostoyanie gazogidratnykh issledovanii v mire i prakrticheskie resul’taty dlya gazovoi promyshlennosti (State of the Art in Gas Hydrate Research in the World and Practical Results for the Gas Industry), Moscow: Gazprom, 2004, p. 66.Google Scholar
  17. 17.
    Gumerov, N.A. and Chahine, G.L., Dynamics of bubbles in conditions of gas hydrate formation, Fluid Dyn., 1992, vol. 27, no. 5, p. 664.CrossRefGoogle Scholar
  18. 18.
    Zheng, L., Yapa, P.D., and Chen, F., A model for simulating deepwater oil and gas blowouts—Part I: Theory and model formulation, J. Hydraul. Res., 2002, vol. 41, no. 4, p. 339.CrossRefGoogle Scholar
  19. 19.
    Gumerov, N.A., Self-similar growth of a gas hydrate layer separating gas and liquid, Fluid Dyn., 1992, vol. 27, no. 5, p. 664.CrossRefGoogle Scholar
  20. 20.
    Makogon, Yu.F., Gidraty prirodnykh gazov (Natural Gas Hydrates), Moscow: Nedra, 1974.Google Scholar
  21. 21.
    Luo, Y.-T., Zhu, J.-H., Fan, S.S., and Chen, G.J., Study on the kinetics of hydrate formation in a bubble column, Chem. Eng. Sci., 2007, vol. 62, no. 4, p. 1000.CrossRefGoogle Scholar
  22. 22.
    Kutepov, A.M., Polyanin, A.D., Zapryanov, Z.D., Vyazmin, A.V., and Kazenin, D.A., Khimicheskaya gidrodinamika: Spravochnik (Chemical Fluid Dynamics: A Handbook), Moscow: Kvantum, 1996.Google Scholar
  23. 23.
    Kelbaliev, G.I. and Rasulov, S.R., Gidrodinamika i massoperenos v dispersnykh sredakh (Hydrodynamics and Mass Transfer in Disperse Media), St. Petersburg: KhimIzdat, 2014.Google Scholar
  24. 24.
    Nigmatulin, R.I., Dinamika mnogofaznykh sred (Multiphase Medium Dynamics), Moscow: Nauka, 1987, vol. 1.Google Scholar
  25. 25.
    Shagapov, V.Sh., Chiglintseva, A.S., and Kunsbaeva, G.A., Theoretical modeling of a reactor for washing gas out of hydrates, Theor. Found. Chem. Eng., 2013, vol. 47, no. 2, p. 159.CrossRefGoogle Scholar
  26. 26.
    Namiot, A.Yu., Rastvorimosr’ gaza v vode (Gas Solubility in Water), Moscow: Nedra, 1981.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. Sh. Shagapov
    • 1
    • 2
    • 3
  • A. S. Chiglintseva
    • 1
    • 3
  • A. A. Rusinov
    • 3
  • B. I. Tazetdinov
    • 3
  1. 1.Institute of Mechanics and Engineering, Kazan Science CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Institute of Mechanics, Ufa BranchRussian Academy of SciencesUfa, BashkortostanRussia
  3. 3.Birsk Branch of Bashkir State UniversityBirsk, BashkortostanRussia

Personalised recommendations