Theoretical Foundations of Chemical Engineering

, Volume 50, Issue 6, pp 1049–1057 | Cite as

Isotopically modified molybdenum for safe nuclear power

  • A. N. Shmelev
  • A. Yu. Smirnov
  • A. K. Bonarev
  • V. D. Borisevich
  • G. G. Kulikov
  • G. A. Sulaberidze
Proceedings of XXV European Conference on Mixing “MIXING 15”

Abstract

The possibility of applying isotopically modified molybdenum like the structural material of fuel elements for light-water and fast reactors with dispersed fuel containing granules of the metal U–Mo-alloy in Mo matrix, has been discussed. It has been shown that with isotope-modified molybdenum with the neutron capture cross-section close to natural zirconium, the improved safety of nuclear reactors, i.e., both thermal and fast-neutron reactors, due to the improvement of heat-transfer emission in fuel elements has been achieved. Assessments demonstrated that molybdenum with economic practical cost may be obtained on the existing cascades of gas centrifuges developed for the separation of nonuranium isotopes.

Keywords

molybdenum safety of nuclear reactors isotopes separation separating cascade multicomponent mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atomnaya nauka i tekhnika v SSSR (Nuclear Science and Engineering in the Soviet Union), Morokhov, I.D., Zadikyan, A.A., and Kruglov, A.K., Eds., Moscow: Atomizdat, 1977.Google Scholar
  2. 2.
    Kalin, B.A., Platonov, P.A., Tuzov, Yu.V., Chernov, I.I., and Shtrombakh, Ya.I., Fizicheskoe Materialovedenie (Physical Materials Science), vol. 6: Konstruktsionnye materialy yadernoi tekhnik (Structural Materials for Nuclear Engineering), Moscow: MIFI, 2012.Google Scholar
  3. 3.
    Fizicheskoe materialovedenie (Physical Materials Science), vol. 7: Yadernye toplivnye materialy (Nuclear Fuel Materials), Kalin, B.A., Ed., Moscow: MIFI, 2012.Google Scholar
  4. 4.
    Hummel, H.H. and Okrent, D., Reactivity Coefficients in Large Fast Power Reactors, La Grange Park, Ill.: American Nuclear Society, 1970.Google Scholar
  5. 5.
    Grigor'ev, I.S. and Meilikhov, E.Z., Fizicheskie velichiny: Spravochnik (Physical Data: A Handbook), Moscow: Energoatomizdat, 1991.Google Scholar
  6. 6.
    Izotopy: Svoistva, poluchenie, primenenie (Izotopes: Properties, Production, and Applications), Baranov, V.Yu., Ed., Moscow: Fizmatlit, 2005, vol.1.Google Scholar
  7. 7.
    Sulaberidze, G.A. and Borisevich, V.D., Cascades for separation of multicomponent isotope mixtures, Sep. Sci. Technol., 2001, vol. 36, p. 1769.CrossRefGoogle Scholar
  8. 8.
    Minenko, V.P., Limiting enrichment of intermediate isotopes at the cascade ends, At. Energ., 1972, vol. 33, p. 704.CrossRefGoogle Scholar
  9. 9.
    Smirnov, A.Yu. and Sulaberidze, G.A., Features of mass transfer of intermediate components in square gas centrifuge cascade for separating multicomponent mixtures, Theor. Found. Chem. Eng., 2014, vol. 48, p. 629.CrossRefGoogle Scholar
  10. 10.
    Smirnov, A.Yu., Borisevich, V.D., and Sulaberidze, G.A., Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials, Theor. Found. Chem. Eng., 2012, vol. 46, p. 373.CrossRefGoogle Scholar
  11. 11.
    Cheltsov, A.N. and Sosnin, L.Yu., Nuclear engineering stable isotopes of lead, molybdenum, nickel, and methods of their production, Proc. of SPLG-2006, 2006, p. 320.Google Scholar
  12. 12.
    de la Garza, A., Garrett, G.A., and Murphy, J.E., Multicomponent isotope separation in cascades, Chem. Eng. Sci., 1961, vol. 15, p. 188.CrossRefGoogle Scholar
  13. 13.
    von Halle, E., Multocomponent isotope separation in matched abundance ratio cascades with losses from each stage, Proc. 8th Workshop on Separation Phenomena in Liquids and Gases, Oak Ridge, Tenn., 2003.Google Scholar
  14. 14.
    Song, T., Zeng, S., Sulaberidze, G.A., Borisevich, V.D., and Xie, Q., Comparative study of the model and optimum cascades for multicomponent isotope separation, Sep. Sci. Technol., 2010, vol. 45, p. 2113.CrossRefGoogle Scholar
  15. 15.
    Raichura, R.C., Al-Janabi, M.A.M., and Langbein, G.M., The effects of the “key” molar mass of the design of cascade handling a multi-isotope mixture, Ann. Nucl. Energy, 1991, vol. 18, p. 327.CrossRefGoogle Scholar
  16. 16.
    Borisevich, V.D., Borman, V.D., Sulaberidze, G.A., Tikhomirov, A.V., and Tokmantsev, V.I., Fizicheskie osnovy razdeleniya izotopov v gazovoi tsentrifuge (Physical Foundations of Isotope Separation in a Gas Centrifuge), Moscow: MEI, 2011.Google Scholar
  17. 17.
    Alferov, V.P., Shchurovskaya, M.V., Radaev, A.I., and Hanan, N.A., Comparative validation of Monte Carlo codes for conversion of IRT MIPhI research reactor to LEU fuel, Proc. 35th Int. Meeting on Reduced Enrichment for Research and Test Reactors RERTR-2014. Vienna, 2014, p. 12.Google Scholar
  18. 18.
    Shchurovskaya, M.V., Alferov, V.P., Portnov, A.A., and Radaev, A.I., Calculation of reactivity accidents for the IRT MIPhI reactor to validate conversion to lowenrichment fuel, At. Energy, 2014, vol. 117, p. 77.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. N. Shmelev
    • 1
  • A. Yu. Smirnov
    • 1
  • A. K. Bonarev
    • 1
  • V. D. Borisevich
    • 1
  • G. G. Kulikov
    • 1
  • G. A. Sulaberidze
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations