Advertisement

Bioethanol as a promising fuel for fuel cell power plants

  • V. A. KirillovEmail author
  • V. D. Meshcheryakov
  • V. A. Sobyanin
  • V. D. Belyaev
  • Yu. I. Amosov
  • N. A. Kuzin
  • A. S. Bobrin
Article

Abstract

The catalytic reaction of steam reforming of bioethanol for the production of a hydrogen-containing gas in a temperature range from 300 to 700°C is studied. Copper-, nickel-, cobalt-, platinum-, and rhodium-containing catalysts supported on different substrates, including metal grids, are tested. Comparative analysis of the methods of bioethanol processing to a hydrogen-enriched gas for feeding high-temperature proton-exchange polymer electrolyte membrane fuel cells is performed.

Keywords

Steam Fuel Cell Syngas Reformer Cobalt Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reiche, A., Foli, K., Gronwald, O., et al., Sartorius HT-PEM Fuel Cell Technology, Fuel Cell Seminar, Hawaii, 2006, p. 300.Google Scholar
  2. 2.
    Vasudeva, K., Mitra, N., Umasankar, P., and Dhingra, S., Steam Reforming of Ethanol for Hydrogen Production: Thermodynamic Analysis, Int. J. Hydrogen. Energy, 1996, vol. 21, no. 1, p. 13.CrossRefGoogle Scholar
  3. 3.
    Fishtik, I., Alexander, A., Datta, R., and Geana, D., A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Ethanol Via Response Reactions, Int. J. Hydrogen. Energy, 2000, vol. 25, no. 1, p. 31.CrossRefGoogle Scholar
  4. 4.
    Galvita, V.V., Belyaev, V.D., Frumin, A.V., et al., Performance of a SOFC Fed by Ethanol Reforming Products, Solid State Ionics, 2002, p. 1.Google Scholar
  5. 5.
    Llorca, J., de la Piscina, P.R., Dalmon, J-A., et al., CO-Free Hydrogen from Steam-Reforming of Bioethanol Over ZnO-Supported Cobalt Catalysts. Effect of the Metallic Precursor, Appl. Catal., B: Environmental, 2003, vol. 43, no. 4, p. 355.CrossRefGoogle Scholar
  6. 6.
    Batista, M.S. and Rudye, K.S., Santos et al. High Efficiency Steam Reforming of Ethanol by Cobalt-Based Catalysts, J. Power Sources, 2004, vol. 134, p. 27.CrossRefGoogle Scholar
  7. 7.
    Llorca, J., Homs, N., Sales, J., et al., Effect of Sodium Addition on the Performance of Co-ZnO-Based Catalysts for Hydrogen Production from Bioethanol, J. Catal., 2004, vol. 222, no. 2, p. 470.CrossRefGoogle Scholar
  8. 8.
    Cavallaro, S., Mondello, N., and Freni, S., Hydrogen Produced from Ethanol for Internal Reforming Molten Carbonate Fuel Cell, J. Power Sources, 2001, vol. 102, p. 198.CrossRefGoogle Scholar
  9. 9.
    Kaddouri, A. and Mazzocchia, C., A Study of the Influence of the Synthesis Conditions Upon the Catalytic Properties of Co/Sio2 Or Co/Al2O3 Catalysts Used for Ethanol Steam Reforming, Catal. Commun., 2004, vol. 5, p. 339.CrossRefGoogle Scholar
  10. 10.
    Batista, M.S. Rudye, K.S., et al., Characterization of the Activity and Stability of Supported Cobalt Catalysts for the Steam Reforming of Ethanol, J. Power Sources, 2003, vol. 124, p. 99.CrossRefGoogle Scholar
  11. 11.
    Freni, S., Rh Based Catalyst for Indirect Internal Reforming Ethanol Application in Molten Carbonate Fuel Cells, J. Power Sources, 2001, vol. 94, p. 14.CrossRefGoogle Scholar
  12. 12.
    Aupretre, F., Descorme, C., and Duprez, D., Bio-Ethanol Catalytic Steam Reforming Over Supported Metal Catalysts, Catal. Commun., 2002, vol. 3, p. 263.CrossRefGoogle Scholar
  13. 13.
    Cavallaro, S., Chiodo, V., Freni, S., et al., Performance of Rh/Al2O3 Catalyst in the Steam Reforming of Ethanol: H2 Production for MCFC, Appl. Catal., A, 2003, vol. 249, p. 119.CrossRefGoogle Scholar
  14. 14.
    Breen, J.P., Burch, R., and Coleman, H.M., Metal-Catalysis Steam Reforming of Ethanol in the Production of Hydrogen for Fuel Cell Application, Appl. Catal., B, 2002, vol. 39, no. 1, p. 65.CrossRefGoogle Scholar
  15. 15.
    Liguras, D.K., Kondarides, D.I., and Verykios, X.E., Production of Hydrogen for Fuel Cell by Steam Reforming of Ethanol Over Supported Noble Metal Catalysts, Appl. Catal., B, 2003, vol. 43, no. 4, p. 345.CrossRefGoogle Scholar
  16. 16.
    Diagne, C., Idriss, H., and Kiennemann, A., Hydrogen Production by Ethanol Reforming Over Rh/CeO2-ZrO2, Catal. Commun., 2002, vol. 3, p. 565.CrossRefGoogle Scholar
  17. 17.
    Wanat, E.S., Venkataraman, K., and Shmidt, L.D., Steam Reforming and Water-Gas Shift of Ethanol on Rh and Rh-Ce Catalysts in a Catalytic Wall Reactor, Appl. Catal., A, 2004, vol. 276, p. 155.CrossRefGoogle Scholar
  18. 18.
    Aupretre, F., Descorme, C., Duprez, D., et al., Ethanol Steam Reforming Over MgxNi1-XAl2O3 Spinel Oxide-Supported Rh Catalysts, J. Catal., 2005, vol. 233, p. 464.CrossRefGoogle Scholar
  19. 19.
    Frusteri, F., Freni, S., Spadaro, L., et al., H2 Production for MC Fuel Cell by Steam Reforming of Ethanol Over MgO Supported Pd, Rh, Ni and Co Catalysts, Catal. Commun., 2004, vol. 5, p. 611.CrossRefGoogle Scholar
  20. 20.
    Rasko, J., Hancz, A., and Erdohelyi, A., Surface Species and Gas Phase Products in Steam Reforming of Ethanol on TiO2 and Rh / TiO2, Appl. Catal., A, 2004, vol. 269, nos. 1–2, p. 13.Google Scholar
  21. 21.
    Fatsikostas, A., Kondarides, D., and Verykios, X., Steam Reforming of Biomass-Derived Ethanol for the Production of Hydrogen for Fuel Applications, Chem. Commun., 2001, p. 851.Google Scholar
  22. 22.
    Lee, S. and Ahmed, S., Ahluwalia. Steam Reforming of Ethanol at Elevated Pressure for Hydrogen Production, Fuel Cell Seminar, Hawaii, 2006.Google Scholar
  23. 23.
    Fatsikostas, A.N., Kondarides, D.I., and Verykios, X.E., Production of Hydrogen for Fuel Cells by Reformation of Biomass-Derived Ethanol, Catalysis Today, 2002, vol. 75, p. 145.CrossRefGoogle Scholar
  24. 24.
    Jie, Sun., Xinping, Qiu., Feng, Wu., Wentao, Zhu., Wendong, Wang., and Shaojun, Hao., Hydrogen from Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application, Int. J. Hydrogen Energy, 2004, vol. 29, no. 106, p. 1075.CrossRefGoogle Scholar
  25. 25.
    Jie, Sun., Xin-Ping, Qui., Feng, Wu., and Wen-Tao, Zhu., H2 from Steam Reforming of Ethanol at Low Temperature Over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 Catalysts for Fuel-Cell Application, Int. J. Hydrogen Energy, 2005, vol. 30, p. 437.CrossRefGoogle Scholar
  26. 26.
    Fatsikostas, A.N. and Verykios, X.E., Reaction Network of Steam Reforming of Ethanol Over Ni-Based Catalysts, J. Catalysis, 2004, vol. 225, no. 2, p. 439.CrossRefGoogle Scholar
  27. 27.
    Frusteri, F., Freni, S., Chiodo, V., et al., Potassium Improved Stability of Ni/MgO in the Steam Reforming of Ethanol for the Production of Hydrogen for MCFC, J. Power Sources, 2004, vol. 132, nos. 1–2, p. 139.CrossRefGoogle Scholar
  28. 28.
    Comas, J., Marino, F., Laborde, M., and Amadeo, N., Bioethanol Steam Reforming on Ni/Al2O3, Chem. Eng. J, 2004, vol. 98, p. 61.CrossRefGoogle Scholar
  29. 29.
    Frusteri, F., Freni, S., Chiodo, V., et al., Steam Reforming of Bio-Ethanol on Alkali-Doped Ni/MgO Catalyst: Hydrogen Production for MC Fuel Cell, Appl. Catal., A, 2004, vol. 270,nos. 1–2, p. 1.Google Scholar
  30. 30.
    Srinivas, D., Satyanarayana, C.V.V., Potdar, H.S., and Ratnasamy, P., Structural Studies on Ni-CeO2-ZrO2 Catalyst for Steam Reforming of Ethanol, Appl. Catal., A, 2003, vol. 246, no. 2, p. 323.CrossRefGoogle Scholar
  31. 31.
    Freni, S., Cavallaro, S., Mondello, N., et al., Production of Hydrogen for MC Fuel Cell by Steam Reforming of Ethanol Over MgO Supported Ni and Co Catalyst, Catal. Commun., 2003, vol. 4, no. 6, p. 259.CrossRefGoogle Scholar
  32. 32.
    Marino, F., Boveri, M., Baronetti, G., and Laborde, M., Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/-Al2O3 Catalysts. Effect of Ni, Int. J. Hydrogen Energy, 2001, vol. 26, no. 2, p. 665.CrossRefGoogle Scholar
  33. 33.
    Marino, F., Baronetti, G., Jobbagy, M., and Laborde, M., Cu-Ni-K/-Al2O3 Supported Catalysts for Ethanol Steam Reforming. Formation of Hydrotalcite-Type Compounds As a Result of Metal-Support Interaction, Appl. Catal., A, 2003, vol. 238, no. 1, p. 41.CrossRefGoogle Scholar
  34. 34.
    Klouz, V., Fierro, V., Denton, P., et al., Ethanol Reforming for Hydrogen in a Hybrid Electric Vehicle: Process Optimization, J. Power Sources, 2001, vol. 4549, p. 1.Google Scholar
  35. 35.
    Bergamaschi, V.S., Carvalho, F.M.S., Rodrigues, C., and Fernandes, D.B., Preparation and Evaluation of Zirconia Microspheres As Inorganic Exchanger in Adsorption of Copper and Nickel Ions and As Catalyst in Hydrogen Production from Bioethanol, Chem. Eng. J., 2005, vol. 112,nos. 1–3, p. 153.CrossRefGoogle Scholar
  36. 36.
    Goula, M.A., Kontou, S.K., and Tsiakaras, P.E., Hydrogen Production by Ethanol Steam Reforming Over a Commercial Pd/-Al2O3 Catalyst, Appl. Catal., B, 2004, vol. 49, no. 2, p. 135.CrossRefGoogle Scholar
  37. 37.
    Danilova, M.M., Sabirova, Z.A., Kuzin, N.A., et al., Steam Reforming of Methane over Nickel Catalysts Supported on Porous Nickel, Mekhanizmy kataliticheskikh reaktsii (Mechanisms of Catalytic Reactions), St. Petersburg, 2006, vol. 2.Google Scholar
  38. 38.
    Appleby, A.J., Issues in Fuel Cell Commercialization, J. Power Sources, 1996, vol. 69, p. 153.CrossRefGoogle Scholar
  39. 39.
    Adamson, K-A., Fuel Cells and Hydrogen & Targets, Fuel Cell Seminar, Hawaii, 2006, p. 3.Google Scholar
  40. 40.
    V. A. Kirillov, N. A. Kuzin, A. V. Kulikov, S. I. Fadeev, A. B. Shigarov, and V. A. Sobyanin, Thermally Coupled Catalytic Reactor for Steam Reforming of Methane and Liquid Hydrocarbons: Experiment and Mathematical Modeling, Teor. Osn. Khim. Tekhnol. 2003, vol. 37, no. 3, p. 300 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 37, no. 3, p. 276].Google Scholar
  41. 41.
    Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.Google Scholar
  42. 42.
    Perry, R.H. and Green, D.W., Perry’s Chemical Engineer’s handbook MacGraw-Hill, 1999.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • V. A. Kirillov
    • 1
    Email author
  • V. D. Meshcheryakov
    • 1
  • V. A. Sobyanin
    • 1
  • V. D. Belyaev
    • 1
  • Yu. I. Amosov
    • 1
  • N. A. Kuzin
    • 1
  • A. S. Bobrin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations