Advertisement

Theoretical and Mathematical Physics

, Volume 201, Issue 1, pp 1503–1513 | Cite as

Full Analytic Spectrum of Generalized Jaynes-Cummings Hamiltonians

  • A. J. AdanmitondeEmail author
  • G. Y. H. AvossevouEmail author
Article
  • 12 Downloads

Abstract

We develop an analytic formalism using basic quantum mechanics techniques to successfully solve the multiphoton Jaynes–Cummings and the generalized Dicke Hamiltonians. For this, we split the Hamiltonians of these models into two operators that have the properties of constants of motion for these systems. We then use some well-known operator properties to obtain complete analytic spectra for the considered models.

Keywords

quantum mechanics Jaynes–Cummings Hamiltonian commuting operator constant of motion confluent hypergeometric function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the referee for a thorough review and the relevant comments that have helped to improve the work.

Conflicts of interest. The authors declare no conflicts of interest.

References

  1. 1.
    I. I. Rabi, “On the process of space quantization,” Phys. Rev., 49, 324–328 (1936); “Space quantization in a gyrating magnetic field,”, 51, 652–654 (1937).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE, 51, 89–109 (1963).CrossRefGoogle Scholar
  3. 3.
    P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by intense radiation fields,” Phys. Lett. A, 73, 97–99 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett., 44, 1323–1326 (1980).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Krivec and V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the ídt molecular ion,” Phys. Rev. A, 52, 221–226 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    K. Wãodkiewicz, P. L. Knight, S. J. Buckle, and S. M. Barnett, “Squeezing and superposition states,” Phys. Rev. A, 35, 2567–2577 (1987).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Imamol˜glu and S. E. Harris, “Lasers without inversion: Interference of dressed lifetime-broadened states,” Opt. Lett., 14, 1344–1346 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Kochetov, “Exactly solvable non-linear generalisations of the Jaynes–Cummings model,” J. Phys. A: Math. Gen., 20, 2433–2442 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    V. Buzek, “On the non-linear Jaynes–Cummings model: The path-integral approach,” Czech. J. Phys. B, 39, 757–765 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    S. C. Gou, “Characteristic oscillations of phase properties for pair coherent states in the two-mode Jaynes–Cummings-model dynamics,” Phys. Rev. A, 48, 3233–3241 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    E. Choreño, D. Ojeda-Guillén, M. Salazar-Ramírez, and V. D. Granados, “Two-mode generalization of the Jaynes–Cummings and anti-Jaynes–Cummings models,” Ann. Phys., 387, 121–134 (2017).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Chaichian, D. Ellinas, and P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model,” Phys. Rev. Lett., 65, 980–983 (1990).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. F. Dossa and G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models,” J. Math. Phys., 55, 102104 (2014).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J. García-Ripoll, and E. Solano, “Relativistic quantum mechanics with trapped ions,” New J. Phys., 13, 095003 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    A. Retzker, E. Solano, and B. Reznik, “Tavis–Cummings model and collective multiqubit entanglement in trapped ions,” Phys. Rev. A, 75, 022312 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    W. Kopylov, M. Radonjić, T. Brandes, A. Balaž, and A. Pelster, “Dissipative two-mode Tavis–Cummings model with time-delayed feedback control,” Phys. Rev. A, 92, 063832 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    B. Buck and C. V. Sukumar, “Exactly soluble model of atom-phonon coupling showing periodic decay and revival,” Phys. Lett. A, 81, 132–135 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    C. C. Gerry, “Two-photon Jaynes–Cummings model interacting with the squeezed vacuum,” Phys. Rev. A, 37, 2683–2686 (1988).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Joshi and R. R. Puri, “Dynamical evolution of the two-photon Jaynes–Cummings model in a Kerr-like medium,” Phys. Rev. A, 45, 5056–5060 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    V. Bartzis and N. Nayak, “Two-photon Jaynes–Cummings model,” J. Opt. Soc. Amer. B, 8, 1779–1786 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    P. Zhou and J. S. Peng, “Dipole squeezing in the two-photon Jaynes–Cummings model with superposition state preparation,” Phys. Rev. A, 44, 3331–3335 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    T. Nasreen and M. S. K. Razmi, “Atomic emission and cavity field spectra for a two-photon Jaynes–Cummings model in the presence of the Stark shift,” J. Opt. Soc. Amer. B, 10, 1292–1300 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    K. M. Ng, C. F. Lo, and K. L. Liu, “Exact eigenstates of the two-photon Jaynes–Cummings model with the counter-rotating term,” Eur. Phys. J. D, 6, 119–126 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    C. V. Sukumar and B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model,” Phys. Lett. A., 83, 211–213 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    H. R. Baghshahi, M. K. Tavassoly, and A. Behjat, “Entropy squeezing and atomic inversion in the k-photon Jaynes–Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach,” Chinese Phys. B, 23, 074203 (2014).CrossRefGoogle Scholar
  26. 26.
    R. Koc, H. Tütünculer, M. Koca, and E. Olgar, “Algebraic treatments of the problems of the spin-1/2 particles in the one and two-dimensional geometry: A systematic study,” Ann. Phys., 319, 333–347 (2005).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    H. Panahi and S. A. Rad, “Two and k-photon Jaynes–Cummings models and Dirac oscillator problem in Bargmann–Segal representation,” Int. J. Theor. Phys., 52, 4068–4073 (2013).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F. Cooper, A. Khare, and U. Sukhateme, “Supersymmetry and quantum mechanics,” Phys. Rep., 251, 267–385 (1995).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Dutt, A. Khare, and U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials,” Amer. J. Phys., 56, 163–168 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    Y. A. Gol’fand and E. P. Likhtman, “Extension of the algebra of Poincare group generators and violation of P invariance,” JETP Lett., 13, 323–326 (1971).ADSGoogle Scholar
  31. 31.
    D. V. Volkov and V. P. Akulov, “Possible universal neutrino interaction,” JETP Lett., 16, 438–440 (1972).ADSzbMATHGoogle Scholar
  32. 32.
    P. Ramond, “Dual theory for free fermions,” Phys. Rev. D, 3, 2415–2418 (1971).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Neveu and J. Schwarz, “Factorizable dual model of pions,” Nucl. Phys. B, 31, 86-12 (1971).ADSCrossRefGoogle Scholar
  34. 34.
    J. Wess and B. Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B, 70, 39–50 (1974); “Supergauge invariant extension of quantum electrodynamics,” Nucl. Phys. B, 78, 1–13 (1974).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    H.-Y. Fan and L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models,” Commun. Theor. Phys., 25, 105–110 (1996).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    J. V. Hounguevou, F. A. Dossa, and G. Y. Avossevou, “Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models,” Theor. Math. Phys., 193, 1464–1479 (2017).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    H.-X. Lu and X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation,” Chinese Phys., 9, 1009–1963 (2000).Google Scholar
  38. 38.
    E. Choreño, D. Ojeda-Guillén, and V. D. Granados, “Matrix diagonalization and exact solution of k-photon Jaynes–Cummings model,” Eur. Phys. J. D, 72, 142 (2018); arXiv:1803.03206v1 [quant-ph] (2018).ADSCrossRefGoogle Scholar
  39. 39.
    G. Petiau, “Sur la détermination des fonctions d’ondes du corpuscule de spin ℒ en interaction avec un champ magnitique ou electrique constant,” J. Phys. Radium, 17, 956–964 (1956).MathSciNetCrossRefGoogle Scholar
  40. 40.
    M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), U.S. Government Printing Office, Washington, D. C. (1964).Google Scholar
  41. 41.
    A. Maggitti, M. Radonjić, and B. M. Jelenković, “Dark-polariton bound pairs in the modified Jaynes–Cummings–Hubbard model,” Phys. Rev. A, 93, 013835 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    Ts. Gantsog, A. Joshi, and R. Tanas, “Phase properties of one- and two-photon Jaynes–Cummings models with a Kerr medium,” Quantum Semiclass. Opt., 8, 445–456 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    B. M. Rodríguez-Lara and H. M. Moya-Cessa, “The exact solution of generalized Dicke models via Susskind–Glogower operators,” J. Phys. A: Math. Theor., 46, 095301 (2013); arXiv:1207.6551v2 [quant-ph] (2012).ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques et de Sciences PhysiquesUniversité d’Abomey-CalaviPorto-NovoRépublique du Bénin

Personalised recommendations