Advertisement

Theoretical and Mathematical Physics

, Volume 201, Issue 1, pp 1413–1425 | Cite as

Description of Solutions with the Uniton Number 3 in the Case of One Eigenvalue: Counterexample to the Dimension Conjecture

  • A. V. DomrinaEmail author
Article
  • 3 Downloads

Abstract

We explicitly describe solutions of the noncommutative unitary U (1) sigma model that represent finitedimensional perturbations of the identity operator and have only one eigenvalue and the minimum uniton number 3. We also show that the solution set M(e, r, u) of energy e and canonical rank r with the minimum uniton number u = 3 has a complex dimension greater than r for e = 4 n - 1 and r = n+1, where n ≥ 3. This disproves the dimension conjecture that holds in the case u ∈ {1, 2}.

Keywords

noncommutative sigma model uniton theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflicts of interest. The author declares no conflicts of interest.

References

  1. 1.
    L. Hörmander, The Analysis of Linear Partial Differential Operators: III. Pseudo-Differential Operators (Grundlehren Math. Wiss., Vol. 274), Springer, Berlin (1985).Google Scholar
  2. 2.
    A. V. Domrin, “Noncommutative unitons,” Theor. Math. Phys., 154, 184–200 (2008).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. V. Domrin, “Moduli spaces of solutions of a noncommutative sigma model,” Theor. Math. Phys., 156, 1231–1246 (2008).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. V. Domrina, “Extended solutions in a noncommutative sigma model,” Proc. Steklov Inst. Math., 279, 64–72 (2012).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. V. Domrina, “Integer-valued characteristics of solutions of the noncommutative sigma model,” Theor. Math. Phys., 178, 265–277 (2014).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. V. Domrina and A. V. Domrin, “On the dimension of solution spaces of a noncommutative sigma model in the case of uniton number 2,” Proc. Steklov Inst. Math., 298, 104–117 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations