Skip to main content
Log in

Strongly Intensive Fluctuations Between the Multiplicity and the Total Transverse Momentum in pp Interactions in the Multipomeron Exchange Approach

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We calculate the strongly intensive variables Σ and Δ that suppress trivial volume fluctuations and are constructed for the charged particle multiplicity n and the total transverse momentum Pt in a modified multipomeron exchange approach for proton-proton interactions in the range of collision energies attainable with the SPS and LHC accelerators. In this approach, the interaction between the color quark-gluon strings formed from cut pomerons are effectively taken into account; in this case, the role of these interactions increases as the collision energy increases. The inequalities Σ(Pt, n) > 1 and Δ(Pt, n) < 1, which agree with the experimental data, are the main result of the calculations for energies attainable at the SPS. We show that as the energy increases, Σ(Pt, n) behaves nonmonotonically and Δ(Pt, n) increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van, “Jets in small-p T hadronic collisions, universality of quark fragmentation, and rising rapidity plateaus,” Phys. Lett. B, 81, 68–74 (1979).

    Article  ADS  Google Scholar 

  2. A. B. Kaidalov, “The quark-gluon structure of the pomeron and the rise of inclusive spectra at high energies,” Phys. Lett. B, 116, 459–463 (1982).

    Article  ADS  Google Scholar 

  3. V. N. Gribov, “A reggeon diagram technique,” JETP, 26, 414–423 (1968).

    ADS  Google Scholar 

  4. K. Werner, “Strings, pomerons, and the VENUS model of hadronic interactions at ultrarelativistic energies,” Phys. Rep., 232, 87–299 (1993).

    Article  ADS  Google Scholar 

  5. F. Salzman and G. Salzman, “Pion production from π p collisions in the long-range interaction model,” Phys. Rev., 120, 599–608 (1960).

    Article  ADS  Google Scholar 

  6. D. Amati, A. Stanghellini, and S. Fubini, “Theory of high-energy scattering and multiple production,” Nuovo Cimento, 26, 896–954 (1962).

    Article  Google Scholar 

  7. L. Bertocchi, S. Fubini, and M. Tonin, “Integral equation for high-energy pion-pion scattering,” Nuovo Cimento, 25, 626–654 (1962).

    Article  Google Scholar 

  8. V. A. Abramovsky, V. N. Gribov, and O. V. Kancheli, “Character of inclusive spectra and fluctuations produced in inelastic processes by multi-pomeron exchange,” Sov. J. Nucl. Phys., 18, 308–317 (1974).

    Google Scholar 

  9. G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B, 72, 461–473 (1974).

    Article  ADS  Google Scholar 

  10. G. Veneziano, “Regge intercepts and unitarity in planar dual models,” Nucl. Phys. B, 74, 365–377 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Veneziano, “Large N expansion in dual models,” Phys. Lett. B, 52, 220–222 (1974).

    Article  ADS  Google Scholar 

  12. G. Veneziano, “Some aspects of a unified approach to gauge, dual, and Gribov theories,” Nucl. Phys. B, 117, 519–545 (1976).

    Article  ADS  Google Scholar 

  13. B. M. Barbashov and V. V. Nesterenko, Relativistic-String Model in Hadron Physics [in Russian], Energoatomizdat, Moscow (1987).

    Google Scholar 

  14. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., 82, 664–679 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Zach, M. Faber, and P. Skala, “Flux tubes and their interaction in U(1) lattice gauge theory,” Nucl. Phys. B, 529, 505–522 (1998); arXiv:hep-lat/9709017v1 (1997).

    Article  ADS  Google Scholar 

  16. F. Bissey, A. I. Signal, and D. B. Leinweber, “Comparison of gluon flux-tube distributions for quark-diquark and quark-antiquark hadrons,” Phys.Rev.D, 80, 114506 (2009).

    Article  ADS  Google Scholar 

  17. P. Bicudo, N. Cardoso, and M. Cardoso, “Color field densities of the quark-antiquark excited flux tubes in SU(3) lattice QCD,” Phys. Rev. D, 98, 114507 (2018); arXiv:1808.08815v2 [hep-lat] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. A. Braun and C. Pajares, “Particle production in nuclear collisions and string interactions,” Phys. Lett. B, 287, 154–158 (1992).

    Article  ADS  Google Scholar 

  19. A. Moscoso, C. Andrés, and C. Pajares, “High-density QCD and the new LHC data,” Theor. Math. Phys., 176, 937–947 (2013).

    Article  Google Scholar 

  20. E. V. Andronov, “Influence of the quark-gluon string fusion mechanism on long-range rapidity correlations and fluctuations,” Theor. Math. Phys., 185, 1383–1390 (2015).

    Article  MathSciNet  Google Scholar 

  21. M. A. Braun, J. Dias de Deus, A. S. Hirsch, C. Pajares, R. P. Scharenberg, and B. K. Srivastava, “De-confinement and clustering of color sources in nuclear collisions,” Phys. Rep., 599, 1–50 (2015); arXiv:1501.01524v1 [nucl-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Armesto, D. A. Derkach, and G. A. Feofilov, “pt-Multiplicity correlations in a multi-pomeron-exchange model with string collective effects,” Phys. Atom. Nucl., 71, 2087–2095 (2008).

    Article  ADS  Google Scholar 

  23. E. Bodnia, D. Derkach, G. A. Feofilov, V. Kovalenko, and A. Puchkov, “Multi-pomeron exchange model for pp and \(p\overline p \) colHsions at ultra-high energy,” PoS (QFTHEP 2013), 183, 060 (2013); arXiv:1310.1627v1 [hep-ph] (2013).

    Google Scholar 

  24. E. O. Bodnya, V. N. Kovalenko, A. M. Puchkov, and G. A. Feofilov, “Correlation between mean transverse momentum and multiplicity of charged particles in pp and \(p\overline p \) collisions: From ISR to LHC,” AIP Conf. Proc., 1606, 273–282 (2014); arXiv:1401.7534v1 [hep-ph] (2014).

    Article  ADS  Google Scholar 

  25. M. I. Gorenstein and M. Gazdzicki, “Strongly intensive quantities,” Phys. Rev. C, 84, 014904 (2011); arXiv: 1101.4865v3 [nucl-th] (2011).

    Article  ADS  Google Scholar 

  26. M. Gazdzicki, M. I. Gorenstein, and M. Mackowiak-Pawlowska, “Normalization ofstrongly intensive quantities,” Phys. Rev. C, 88, 024907 (2013); arXiv:1303.0871v2 [nucl-th] (2013).

    Article  ADS  Google Scholar 

  27. M. Stephanov, “QCD phase diagram and the critical point,” Internat. J. Modern Phys. A, 20, 4387–4392 (2005); arXiv:hep-ph/0402115v1 (2004).

    Article  ADS  Google Scholar 

  28. V. Vovchenko, R. V. Poberezhnyuk, D. V. Anishkin, and M. I. Gorenstein, “Non-Gaussian particle number fluctuations in vicinity of the critical point for van der Waals equation of state,” J. Phys. A: Math. Theor., 49, 015003 (2016); arXiv:1507.06537v3 [nucl-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Mrówczyński, M. Rybczyński, and Z. Włodarczyk, “Transverse momentum versus multiplicity fluctuations in high-energy nuclear collisions,” Phys. Rev. C, 70, 054906 (2004); arXiv:nucl-th/0407012v2 (2004).

    Article  ADS  Google Scholar 

  30. M. I. Gorenstein and K. Grebieszkow, “Strongly intensive measures for transverse momentum and particle number fluctuations,” Phys. Rev. C, 89, 034903 (2014); arXiv:1309.7878v2 [nucl-th] (2013).

    Article  ADS  Google Scholar 

  31. H. Appelshäuser et al. [NA49 Collab.], “Event-by-event fluctuations of average transverse momentum in central Pb + Pb collisions at 158 GeV per nucleon,” Phys. Lett. B, 459, 679–686 (1999); arXiv:hep-ex/9904014v1 (1999).

    Article  ADS  Google Scholar 

  32. T. Anticic et al. [NA49 Collab.], “Transverse momentum fluctuations in nuclear collisions at 158A GeV,” Phys. Rev. C, 70, 034902 (2004); arXiv:hep-ex/0311009v2 (2003).

    Article  ADS  Google Scholar 

  33. S. Mrówczyński, “Correlation of transverse momentum and multiplicity in a superposition model of nucleus-nucleus collisions,” Phys.Rev.C, 73, 044907 (2006).

    Article  ADS  Google Scholar 

  34. M. Braun and C. Pajares, “Transverse momentum distributions and their forward-backward correlations in the percolating color string approach,” Phys. Rev. Lett., 85, 4864–4867 (2000); arXiv:hep-ph/0007201v1 (2000).

    Article  ADS  Google Scholar 

  35. N. Fisher and T. Sjostrand, “Thermodynamical string fragmentation,” JHEP, 1701, 140 (2017); arXiv: 1610.09818v2 [hep-ph] (2016).

    Article  ADS  Google Scholar 

  36. C. A. Pruneau, Data Analysis Techniques for Physical Scientists, Cambridge Univ. Press, Cambridge (2017).

    Book  Google Scholar 

  37. V. Vechernin and I. Lakomov, “The dependence of the number of pomerons on the impact parameter and the long-range rapidity correlations in pp collisions,” PoS (Baldin ISHEPP XXI), 173, 072 (2013).

    Google Scholar 

  38. D. Prokhorova, “Pseudorapidity dependence of multiplicity and transverse momentum fluctuations in pp collisions at SPS energies,” in: The 3rd International Conference on Particle Physics and Astrophysics (ICPPA-2017) (Moscow, Russia, 2–5 October 2017, P. Zarubin, I. Selyuzhenkov, and A. Taranenko, eds.), KnE Publ., Dubai (2018), pp. 217–225.

    Google Scholar 

  39. E. Andronov, “N-N, PT-N, and PT-PT fluctuations in nucleus-nucleus collisions at the NA61/SHINE experiment,” in: The 3rd International Conference on Particle Physics and Astrophysics (ICPPA-2017) (Moscow, Russia, 2–5 October 2017, P. Zarubin, I. Selyuzhenkov, and A. Taranenko, eds.), KnE Publ., Dubai (2018), pp. 226–233.

    Google Scholar 

  40. E. Andronov, “News from the NA61/SHINE experiment,” EPJ Web Conf., 191, 05002 (2018).

    Article  Google Scholar 

  41. V. Vechernin, “Short- and long-range rapidity correlations in the model with a lattice in transverse plane,” EPJ Web Conf., 191, 04011 (2018).

    Article  Google Scholar 

  42. V. V. Vechernin, I. A. Lakomov, and A. M. Puchkov, “Mean transverse momentum, multiplicity, and their correlation in pp-collisions in string fusion model [in Russian],” Vestnik SPbSU. Ser. 4, No. 3, 3–16 (2010).

  43. A. Aduszkiewicz et al. [A61/SHINE Collab.], “Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN super proton synchrotron,” Eur. Phys. J. C, 76, 635 (2016).

    Article  ADS  Google Scholar 

  44. F. Liu, A. Tai, M. Gaździcki, and R. Stock, “On transverse momentum event by event fluctuations in string hadronic models,” Eur. Phys. J. C, 8, 649–654 (1999); arXiv:hep-ph/9809320v1 (1998).

    Article  ADS  Google Scholar 

  45. E. G. Ferreiro, F. del Moral, and C. Pajares, “Transverse momentum fluctuations and percolation of strings,” Phys. Rev. C, 69, 034901 (2004); arXiv:hep-ph/0303137v2 (2003).

    Article  ADS  Google Scholar 

  46. C. Blume et al. [NA49 Collab.], “Results on correlations and fluctuations from NA49,” Nucl. Phys. A, 715, 55c–64c (2003).

    Article  ADS  Google Scholar 

  47. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corkea, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,” Comput. Phys. Comm., 191, 159–177 (2015); arXiv: 1410.3012v1 [hep-ph] (2014).

    Article  ADS  Google Scholar 

  48. P. Skands, “Tuning PYTHIA 8.1: The Monash 2013 tune,” Eur. Phys. J. C, 74, 3024 (2014).

    Article  ADS  Google Scholar 

  49. J. Adam et al. [ALICE Collab.], “Forward-backward multiplicity correlations in pp collisions at \(\sqrt s = 0.9\), 2.76, and 7TeV,” JHEP, 1505, 097 (2015); arXiv:1502.00230v2 [nucl-ex] (2015).

    Article  ADS  Google Scholar 

  50. G. Feofilov, V. Kovalenko, and A. Puchkov, “Correlation between heavy flavour production and multiplicity in pp and p-Pb collisions at high energy in the multi-pomeron exchange model,” EPJ Web Conf., 171, 18003 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Andronov.

Additional information

This research was supported by the Russian Foundation for Basic Research (Grant No. 18-32-01055 mol_a.)

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 3, pp. 415–428, September, 2019.

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, E.V., Kovalenko, V.N. Strongly Intensive Fluctuations Between the Multiplicity and the Total Transverse Momentum in pp Interactions in the Multipomeron Exchange Approach. Theor Math Phys 200, 1282–1293 (2019). https://doi.org/10.1134/S0040577919090034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919090034

Keywords

Navigation