Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 463–474 | Cite as

Conformal Ricci Collineations of Static Space–Times with Maximal Symmetric Transverse Spaces

  • T. HussainEmail author
  • F. Khan


We explore conformal Ricci collineations (CRCs) for static space–times with maximal symmetric transverse spaces. Solving the CRC equations in the degenerate and nondegenerate cases, we show that the dimension of the Lie algebra of CRCs for these space–times can be 6, 7, or 15 for a nondegenerate Ricci tensor, while a degenerate Ricci tensor produces an infinite number of CRCs.


conformal Ricci collineation Ricci collineation static space–time with a maximal symmetric transverse space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Z. Petrov, Einstein Spaces [in Russian], Fizmatgiz, Moscow (1961); English transl., Oxford Univ. Press, Oxford (1969).Google Scholar
  3. 3.
    C. W. Misnor, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).Google Scholar
  4. 4.
    G. S. Hall, Symmetries and Curvature Structure in General Relativity (Lect. Notes Phys., Vol. 46), World Scientific, Singapore (2004).CrossRefzbMATHGoogle Scholar
  5. 5.
    K. L. Duggal, “Curvature inheritance symmetry in Riemannian spaces with applications to fluid space times,” J. Math. Phys., 33, 2989–2997 (1992).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. H. Bokhari and A. R. Kashif, “Curvature collineations of some static spherically symmetric space–times,” J. Math. Phys., 37, 3498–3504 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    U. Camci, H. Baysal, İ. Tarhan, İ. Yilmaz, and İ. Yavuz, “Ricci collineations of the Bianchi types I and III, and Kantowski–Sachs spacetimes,” Internat. J. Modern Phys. D, 10, 751–765 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    U. Camci and İ. Yavuz, “Classifications of Kantowski–Sachs, Bianchi types I and III spacetimes according to Ricci collineations,” Internat. J. Modern Phys. D, 12, 89–100 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    U. Camci and M. Sharif, “Matter collineations in Kantowski–Sachs, Bianchi types I and III spacetimes,” Gen. Rel. Grav., 35, 97–109 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    U. Camci and E. Sahin, “Matter collineation classification of Bianchi type II spacetime,” Gen. Rel. Grav., 38, 1331–1346 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    U. Camci, “Matter collineations of Bianchi V spacetime,” Internat. J. Modern Phys. D, 14, 1023–1036 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    U. Camci and İ. Türkyilmaz, “Ricci collineations in perfect fluid Bianchi V spacetime,” Gen. Rel. Grav., 36, 2005–2019 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    U. Camci and A. Barnes, “Ricci collineations in Friedmann–Robertson–Walker spacetimes,” Class. Q. Grav., 19, 393–404 (2002).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Llosa, “Collineations of a symmetric 2-covariant tensor: Ricci collineations,” J. Math. Phys., 54, 072501 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Herrera, J. Jiménez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galina, “Anisotropic fluids and conformal motions in general relativity,” J. Math. Phys., 25, 3274–3278 (1984).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D. P. Mason and R. Maartens, “Kinematics and dynamics of conformal collineations in relativity,” J. Math. Phys., 28, 2182–2186 (1987).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Baysal, U. Camci, I. Tarhan, I. Yilmaz, and I. Yavuz, “Conformal collineations in string cosmology,” Internat. J. Modern Phys. D, 11, 463–469 (2002).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. P. Mason and M. Tsamparlis, “Spacelike conformal Killing vectors and spacelike congruences,” J. Math. Phys., 26, 2881–2901 (1985).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Sharif and U. Sheikh, “Timelike and spacelike matter inheritance vectors in specific forms of energy–momentum tensor,” Internat. J. Modern Phys. A, 21, 3213–3234 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    U. Camci, A. Qadir, and K. Saifullah, “Conformal Ricci collineations of static spherically symmetric spacetimes,” Commun. Theor. Phys., 49, 1527–1532 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    T. Hussain, S. S. Akhtar, and S. Khan, “Ricci inheritance collineation in Bianchi type I spacetimes,” Eur. Phys. J. Plus, 130, 44 (2015).CrossRefGoogle Scholar
  22. 22.
    T. Hussain, S. S. Akhtar, A. H. Bokhari, and S. Khan, “Ricci inheritance collineations in Bianchi type II spacetime,” Modern Phys. Lett. A, 31, 1650102 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    T. Hussain, A. Musharaf, and S. Khan, “Ricci inheritance collineations in Kantowski–Sachs spacetimes,” Internat. J. Geom. Meth. Modern Phys., 13, 1650057 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    F. Khan, T. Hussain, and S. S. Akhtar, “Conformal Ricci collineations in LRS Bianchi type V spacetimes with perfect fluid matter,” Modern Phys. Lett. A, 32, 1750124 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Baofa, “Kantowski–Sachs cosmological model and an inflationary era,” Internat. J. Theor. Phys., 30, 1121–1125 (1991).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Sharif, “Matter collineations of static spacetimes with maximal symmetric transverse spaces,” Acta Physic. Polon. B, 38, 2003–2010 (2007).ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PeshawarKhyber PakhtunkhwaPakistan

Personalised recommendations