Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 3, pp 455–462 | Cite as

Hawking Radiation of Relativistic Particles from Black Strings

  • F. S. Mirekhtiary
  • I. SakalliEmail author
Article
  • 8 Downloads

Abstract

We study Hawking radiation of relativistic particles from uncharged and charged black strings in 3+1 dimensions in detail. We use the method of quantum tunneling in the framework of the Hamilton–Jacobi approach. We show that the radial function of the action allows calculating the tunneling rate of the emitted relativistic particles. Using the Boltzmann formula, we derive the Hawking temperatures of uncharged and charged black strings. We discuss the influence of the temporal contribution to the tunneling rate.

Keywords

Hawking radiation Hamilton–Jacobi method quantum tunneling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys., 43, 199–220 (1975).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Ashtekar and R. Geroch, “Quantum theory of gravitation,” Rep. Progr. Phys., 37, 1211–1256 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    R. Penrose, “Gravitational collapse and space–time singularities,” Phys. Rev. Lett., 14, 57–59 (1965).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. M. Wald, General Relativity, Univ. of Chicago Press, Chicago, Ill. (1984).CrossRefzbMATHGoogle Scholar
  5. 5.
    G. W. Gibbons and S. W. Hawking, “Cosmological event horizons, thermodynamics, and particle creation,” Phys. Rev. D, 15, 2738–2751 (1977).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Sakalli, A. Övgün, and S. F. Mirekhtiary, “Gravitational lensing effect on the Hawking radiation of dyonic black holes,” Internat. J. Geom. Methods Modern Phys., 11, 1450074 (2014).CrossRefzbMATHGoogle Scholar
  7. 7.
    D. N. Page, “Black hole information,” in: General Relativity and Relativistic Astrophysics (R. B. Mann and R. G. McLenaghan, eds.), World Scientific, Singapore (1994), pp. 1–41; arXiv:hep-th/9305040v5 (1993).Google Scholar
  8. 8.
    J. Preskill, “Do black holes destroy information?,” arXiv:hep-th/9209058v1 (1992).Google Scholar
  9. 9.
    W. G. Unruh and R. M. Wald, “Information loss,” Rep. Progr. Phys., 80, 092002 (2017); arXiv:1703.02140v1 [hep-th] (2017).ADSCrossRefGoogle Scholar
  10. 10.
    J. Ahmed and K. Saifullah, “Hawking radiation of Dirac particles from black strings,” J. Cosmol. Astropart. Phys., 2011, 011 (2011).CrossRefGoogle Scholar
  11. 11.
    R. Kerner and R. B. Mann, “Tunnelling, temperature, and Taub–NUT black holes,” Phys. Rev. D, 73, 104010 (2006); arXiv:gr-qc/0603019v4 (2006).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Kerner and R. B. Mann, “Fermions tunnelling from black holes,” Class. Q. Grav., 25, 095014 (2008); arXiv:0710.0612v5 [hep-th] (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. Kerner and R. B. Mann, “Charged fermions tunnelling from Kerr–Newman black holes,” Phys. Lett. B, 665, 277–283 (2008); arXiv:0803.2246v3 [hep-th] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Zhou and W. Liu, “Hawking radiation of charged Dirac particles from a Kerr–Newman black hole,” Phys. Rev. D, 77, 104021 (2008).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Lie, J.-R. Ren, and S.-W. Wei, “Hawking radiation of Dirac particles via tunneling from the Kerr black hole,” Class. Q. Grav., 25, 125016 (2008); arXiv:0803.1410v2 [gr-qc] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D.-Y. Chen, Q.-Q. Jiang, and X.-T. Zu, “Fermions tunnelling from the charged dilatonic black holes,” Class. Q. Grav., 25, 205022 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Q.-Q. Jiang, “Fermions tunnelling from GHS and non-extremal D1–D5 black holes,” Phys. Lett. B, 666, 517–521 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    C. Ding and J. Jing, “Deformation of contour and Hawking temperature,” Class. Q. Grav., 27, 035004 (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L. Mao, J. Yang, D. Xu, F. Yuan, and Y. Gao, “Effects of homogenization models and emulsifiers on the physicochemical properties of β-carotene nanoemulsions,” J. Dispersion Sci. Techn., 31, 986–993 (2010).CrossRefGoogle Scholar
  20. 20.
    U. A. Gillani and K. Saifullah, “Tunneling of Dirac particles from accelerating and rotating black holes,” Phys. Lett. B, 699, 15–20 (2011); arXiv:1010.6106v2 [hep-th] (2010).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Rehman and K. Saifullah, “Charged fermions tunneling from accelerating and rotating black holes,” J. Cosmol. Astropart. Phys., 2011, 001 (2011); arXiv:1011.5129v2 [hep-th] (2010).CrossRefGoogle Scholar
  22. 22.
    I. Sakalli, A. Övgün, and K. Jusufi, “GUP assisted Hawking radiation of rotating acoustic black holes,” Astrophys. Space Sci., 361, 330 (2016).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Gohar and K. Saifullah, “Emission of scalar particles from cylindrical black holes,” Astrophys. Space Sci., 343, 181–185 (2013).ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    R.-G. Cai and Y.-Z. Zhang, “Black plane solutions in four-dimensional spacetimes,” Phys. Rev. D, 54, 4891–4898 (1996); arXiv:gr-qc/9609065v1 (1996).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J. S. Lemos, “Three dimensional black holes and cylindrical general relativity,” Phys. Lett. B, 353, 46–51 (1995); arXiv:gr-qc/9404041v2 (1994).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Fatima and K. Saifullah, “Thermodynamics of charged and rotating black strings,” Astrophys. Space Sci., 341, 437–443 (2012).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    S. Iso, U. Hiroshi, and F. Wilczek, “Anomalies, Hawking radiations, and regularity in rotating black holes,” Phys. Rev. D, 74, 044017 (2006); arXiv:hep-th/0606018v3 (2006).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Visser, “Essential and inessential features of Hawking radiation,” Internat. J. Modern Phys. D, 12, 649–661 (2003); arXiv:hep-th/0106111v1 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. B. Nielsen and M. Visser, “Production and decay of evolving horizons,” Class. Q. Grav., 23, 4637–4658 (2006); arXiv:gr-qc/0510083v3 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, “Hawking radiation as tunneling for extremal and rotating black holes,” JHEP, 0505, 014 (2005); arXiv:hep-th/0503081v2 (2005).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Nadalini, L. Vanzo, and S. Zerbini, “Hawking radiation as tunnelling: the D-dimensional rotating case,” J. Phys. A: Math. Gen., 39, 6601–6608 (2006); arXiv:hep-th/0511250v1 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. P. S. Lemos, “Two-dimensional black holes and planar general relativity,” Class. Q. Grav., 12, 1081–1086 (1995); arXiv:gr-qc/9407024v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    R. Di Criscienzo, S. A. Hayward, M. Nadalini1, L. Vanzo, and S. Zerbini, “Hamilton–Jacobi tunneling method for dynamical horizons in different coordinate gauges,” Class. Q. Grav., 27, 015006 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    I. Sakalli and S. F. Mirekhtiary, “Effect of the refractive index on the hawking temperature: An application of the Hamilton–Jacobi method,” JETP, 117, 656–663 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    S. F. Mirekhtiary and I. Sakalli, “Hawking radiation of Grumiller black hole,” Commun. Theor. Phys., 61, 558–564 (2014); arXiv:1402.5514v2 [gr-qc] (2014).CrossRefzbMATHGoogle Scholar
  36. 36.
    J. P. S. Lemos, “Three dimensional black holes and cylindrical general relativity,” Phys. Lett. B, 353, 46–51 (1995); arXiv:gr-qc/9404041v2 (1994).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K. Per and F. Wilczek, “Self-interaction correction to black hole radiance,” Nucl. Phys. B, 433, 403–420 (1995); arXiv:gr-qc/9408003v1 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    M. Parikh and Frank Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett., 85, 5042–5045 (2000); arXiv:hep-th/9907001v3 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    M. Parikh, “A secret tunnel through the horizon,” Gen. Rel. Grav., 36, 2419–2422 (2004); Internat. J. Modern Phys. D, 13, 2351–2354 (2004); arXiv:hep-th/0405160v1 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    I. Sakalli and S. F. Mirekhtiary, “Spectroscopy of Rindler modified Schwarzschild black hole,” Astrophys. Space Sci., 350, 727–731 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    J. D. Bekenstein, “Black holes and the second law,” Nuovo Cimento Lett., 4, 737–740 (1972).ADSCrossRefGoogle Scholar
  42. 42.
    J. D. Bekenstein, “Black holes and the second law,” Lett. Nuovo Cimento, 4, 737–740 (1972); “Black holes and entropy,” Phys. Rev. D, 7, 2333–2346 (1973).ADSCrossRefGoogle Scholar
  43. 43.
    R. E. Rodríguez, I. Kra, and J. P. Gilman, Complex Analysis: In the Spirit of Lipman Bers (Grad. Texts Math., Vol. 245), Springer, New York (2013).CrossRefzbMATHGoogle Scholar
  44. 44.
    E. T. Akhmedov, V. Akhmedova, and D. Singleton, “Hawking temperature in the tunneling picture,” Phys. Lett. B, 642, 124–128 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    D. Y. Chen, H. W. Wu, H. T. Yang, and S. Z. Yang, “Effects of quantum gravity on black holes,” Internat. J. Modern Phys. A, 29, 1430054 (2014); arXiv:1410.5071v1 [gr-qc] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    E. T. Akhmedov, V. Akhmedova, D. Singleton, and T. Pilling, “Thermal radiation of various gravitational backgrounds,” Internat. J. Modern Phys. A, 22, 1705–1715 (2007); arXiv:hep-th/0605137v4 (2006).ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, “Temporal contribution to gravitational WKB-like calculations,” Phys. Lett. B, 666, 269–271 (2008); arXiv:0804.2289v2 [hep-th] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    E. T. Akhmedov, T. Pilling, and D. Singleton, “Subtleties in the quasi-classical calculation of Hawking radiation,” Internat. J. Modern Phys. D, 17, 2453–2458 (2008); arXiv:0805.2653v2 [gr-qc] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    B. D. Chowdhury, “Problems with tunneling of thin shells from black holes,” Pramana, 70, 3–26 (2008).ADSCrossRefGoogle Scholar
  50. 50.
    V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, “Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation,” Phys. Lett. B, 673, 227–231 (2009); arXiv:0808.3413v3 [hep-th] (2008).ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Z. W. Feng, H. L. Li, X. T. Zu, and S. Z. Yang, “Quantum corrections to the thermodynamics of Schwarzschild–Tangherlini black hole and the generalized uncertainty principle,” Eur. Phys. J. C, 76, 212 (2016); arXiv:1512.09219v5 [hep-th] (2015).ADSCrossRefGoogle Scholar
  52. 52.
    C. A. S. Silva and F. A. Brito, “Quantum tunneling radiation from self-dual black holes,” Phys. Lett. B, 725, 456–462 (2013).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Z. Feng, G. Li, P. Jiang, Y. Pan, and X. Zu, “Deformed Hamilton-Jacobi equations and the tunneling radiation of the higher-dimensional RN-(A) dS black hole,” Internat. J. Theor. Phys., 55, 3079–3087 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    M. Sharif and W. Javed, “Charged fermions tunneling from regular black holes,” JETP, 115, 782 (2012).ADSCrossRefGoogle Scholar
  55. 55.
    U. Miyamoto and K. Maeda, “Liquid bridges and black strings in higher dimensions,” Phys. Lett. B, 664, 103–106 (2008); arXiv:0803.3037v2 [hep-th] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringNear East UniversityNicosiaNorth Cyprus
  2. 2.Department of PhysicsEastern Mediterranean University, Famagusa, North CyprusMersin-10Turkey

Personalised recommendations