Advertisement

Theoretical and Mathematical Physics

, Volume 198, Issue 2, pp 256–270 | Cite as

Toward an Analytic Perturbative Solution for the Abjm Quantum Spectral Curve

  • R. N. LeeEmail author
  • A. I. Onishchenko
Article
  • 5 Downloads

Abstract

We recently showed how nonhomogeneous second-order difference equations that appear in describing the ABJM quantum spectral curve can be solved using a Mellin space technique. In particular, we provided explicit results for anomalous dimensions of twist-1 operators in the sl(2) sector at arbitrary spin values up to the four-loop order. We showed that the obtained results can be expressed in terms of harmonic sums with additional factors in the form of a fourth root of unity, and the maximum transcendentality principle therefore holds. Here, we show that the same result can also be obtained by directly solving the mentioned difference equations in the space of the spectral parameter u. The solution involves new highly nontrivial identities between hypergeometric functions, which can have various applications. We expect that this method can be generalized both to higher loop orders and to other theories, such as the N=4 supersymmetric Yang–Mills theory.

Keywords

quantum spectral curve spin chain anomalous dimension ABJM model Baxter equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B, 72, 461–473 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Internat. J. Theor. Phys., 38, 1113–1133 (1999); arXiv:hep–th/9711200v3 (1997); “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys., 2, 231–252 (1998).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non–critical string theory,” Phys. Lett. B, 428, 105–114 (1998); arXiv:hep–th/9802109v2 (1998).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Witten, “Anti–de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hepth/9802150v2 (1998).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Beisert et al., “Review of AdS/CFT integrability: An overview,” Lett. Math. Phys., 99, 3–32 (2012); arXiv:1012.3982v5 [hep–th] (2010).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Bombardelli, A. Cagnazzo, R. Frassek, F. Levkovich–Maslyuk, F. Loebbert, S. Negro, I. M. Szécsényi, A. Sfondrini, S. J. van Tongeren, and A. Torrielli, “An integrability primer for the gauge–gravity correspondence: An introduction,” J. Phys. A: Math. Theor., 49, 320301 (2016); arXiv:1606.02945v2 [hep–th] (2016).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. J. van Tongeren, “Integrability of the AdS5×S5 superstring and its deformations,” J. Phys. A: Math. Theor., 47, 433001 (2014); arXiv:1310.4854v3 [hep–th] (2013).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. de Leeuw, A. C. Ipsen, C. Kristjansen, and M. Wilhelm, “Introduction to integrability and one–point functions in N=4 SYM and its defect cousin,” in: Integrability: From Statistical Systems to Gauge Theory, Les Houches School of Physics, Les Houches, France (2017); arXiv:1708.02525v1 [hep–th] (2017).Google Scholar
  9. 9.
    N. Gromov, “Introduction to the spectrum of N=4 SYM and the quantum spectral curve,” arXiv:1708.03648v1 [hep–th] (2017).Google Scholar
  10. 10.
    S. Komatsu, “Lectures on three–point functions in N = 4 supersymmetric Yang–Mills theory,” arXiv: 1710.03853v2 [hep–th] (2017).Google Scholar
  11. 11.
    V. Kazakov, “Quantum spectral curve of γ–twisted N=4 SYM theory and fishnet CFT,” Rev. Math. Phys., 30, 1840010 (2018); arXiv:1802.02160v1 [hep–th] (2018)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 11a.
    M.–L. Ge, A. J. Niemi, K. K. Phua, and L. A. Takhtajan, eds., Ludwig Faddeev Memorial Volume: A Life in Mathematical Physics, World Scientific, Singapore (2018).zbMATHCrossRefGoogle Scholar
  13. 12.
    O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal Chern–Simons–matter theories M2–branes and their gravity duals,” JHEP, 0810, 091 (2008); arXiv:0806.1218v4 [hep–th] (2008).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. 13.
    M. Staudacher, “The factorized S–matrix of CFT/AdS,” JHEP, 0505, 054 (2005); arXiv:hep–th/0412188v1 (2004).ADSCrossRefMathSciNetGoogle Scholar
  15. 14.
    G. Arutyunov, S. Frolov, and M. Staudacher, “Bethe ansatz for quantum strings,” JHEP, 0410, 016 (2004); arXiv:hep–th/0406256v3 (2004).ADSCrossRefMathSciNetGoogle Scholar
  16. 15.
    N. Beisert, “The SU(22) dynamic S–matrix,” Adv. Theor. Math. Phys., 12, 945–979 (2008); arXiv:hep–th/0511082v4 (2005).CrossRefMathSciNetGoogle Scholar
  17. 16.
    N. Beisert, “The analytic Bethe ansatz for a chain with centrally extended su(22) symmetry,” J. Stat. Mech., 0701, P01017 (2007); arXiv:nlin/0610017v2 (2006).Google Scholar
  18. 17.
    N. Beisert, B. Eden, and M. Staudacher, “Transcendentality and crossing,” J. Stat. Mech., 0701, P01021 (2007); arXiv:hep–th/0610251v2 (2006).CrossRefGoogle Scholar
  19. 18.
    R. A. Janik, “The AdS5×S5 superstring worldsheet S–matrix and crossing symmetry,” Phys. Rev. D, 73, 086006 (2006); arXiv:hep–th/0603038v2 (2006).ADSCrossRefMathSciNetGoogle Scholar
  20. 19.
    G. Arutyunov and S. Frolov, “On AdS5×S5 string S–matrix,” Phys. Lett. B, 639, 378–382 (2006); arXiv:hepth/0604043v2 (2006).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  21. 20.
    G. Arutyunov, S. Frolov, and M. Zamaklar, “The Zamolodchikov–Faddeev algebra for AdS5×S5 superstring,” JHEP, 0704, 002 (2007); arXiv:hep–th/0612229v3 (2006).ADSCrossRefGoogle Scholar
  22. 21.
    C. Ahn and R. I. Nepomechie, “N =6 super Chern–Simons theory S–matrix and allloop Bethe ansatz equations,” JHEP, 0809, 010 (2008); arXiv:0807.1924v2 [hep–th] (2008).ADSzbMATHCrossRefGoogle Scholar
  23. 22.
    J. A. Minahan and K. Zarembo, “The Bethe ansatz for N=4 super Yang–Mills,” JHEP, 0303, 013 (2003); arXiv:hep–th/0212208v3 (2002).ADSCrossRefMathSciNetGoogle Scholar
  24. 23.
    N. Beisert and M. Staudacher, “The N=4 SYM integrable super spin chain,” Nucl. Phys. B, 670, 439–463 (2003); arXiv:hep–th/0307042v3 (2003).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  25. 24.
    N. Beisert and M. Staudacher, “Long–range psu(2; 24) Bethe ansatze for gauge theory and strings,” Nucl. Phys. B, 727, 1–62 (2005); arXiv:hep–th/0504190v3 (2005).ADSzbMATHCrossRefGoogle Scholar
  26. 25.
    J. A. Minahan and K. Zarembo, “The Bethe ansatz for superconformal Chern–Simons,” JHEP, 0809, 040 (2008); arXiv:0806.3951v6 [hep–th] (2008).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  27. 26.
    D. Gaiotto, S. Giombi, and X. Yin, “Spin chains in N=6 superconformal Chern–Simons–matter theory,” JHEP, 0904, 066 (2009); arXiv:0806.4589v2 [hep–th] (2008).ADSCrossRefMathSciNetGoogle Scholar
  28. 27.
    N. Gromov and P. Vieira, “The all loop AdS4/CFT3 Bethe ansatz,” JHEP, 0901, 016 (2009); arXiv: 0807.0777v2 [hep–th] (2008).ADSzbMATHCrossRefGoogle Scholar
  29. 28.
    N. Gromov, V. Kazakov, and P. Vieira, “Exact spectrum of anomalous dimensions of planar N =4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett., 103, 131601 (2009); arXiv:0901.3753v3 [hep–th] (2009).ADSCrossRefMathSciNetGoogle Scholar
  30. 29.
    D. Bombardelli, D. Fioravanti, and R. Tateo, “Thermodynamic Bethe ansatz for planar AdS/CFT: A proposal,” J. Phys. A: Math. Theor., 42, 375401 (2009); arXiv:0902.3930v2 [hep–th] (2009).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  31. 30.
    N. Gromov, V. Kazakov, A. Kozak, and P. Vieira, “Exact spectrum of anomalous dimensions of planar N=4 supersymmetric Yang–Mills theory: TBA and excited states,” Lett. Math. Phys., 91, 265–287 (2010); arXiv: 0902.4458v4 [hep–th] (2009).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  32. 31.
    G. Arutyunov and S. Frolov, “Thermodynamic Bethe ansatz for the AdS5×S5 mirror model,” JHEP, 0905, 068 (2009); arXiv:0903.0141v3 [hep–th] (2009).ADSCrossRefGoogle Scholar
  33. 32.
    A. Cavaglia, D. Fioravanti, and R. Tateo, “Extended Y–system for the AdS5/CFT4 correspondence,” Nucl. Phys. B, 843, 302–343 (2011); arXiv:1005.3016v3 [hep–th] (2010).ADSzbMATHCrossRefGoogle Scholar
  34. 33.
    J. Balog and Á. Hegedus, “AdS5×S5 mirror TBA equations from Y–system and discontinuity relations,” JHEP, 1108, 095 (2011); arXiv:1104.4054v2 [hep–th] (2011).ADSzbMATHCrossRefGoogle Scholar
  35. 34.
    N. Gromov, V. Kazakov, S. Leurent, and Z. Tsuboi, “Wronskian solution for AdS/CFT Y–system,” JHEP, 1101, 155 (2011); arXiv:1010.2720v2 [hep–th] (2010).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  36. 35.
    N. Gromov, V. Kazakov, S. Leurent, and D. Volin, “Solving the AdS/CFT Y–system,” JHEP, 1207, 023 (2012); arXiv:1110.0562v3 [hep–th] (2011).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  37. 36.
    D. Bombardelli, D. Fioravanti, and R. Tateo, “TBA and Y–system for planar AdS4/CFT3,” Nucl. Phys. B, 834, 543–561 (2010); arXiv:0912.4715v1 [hep–th] (2009).ADSzbMATHCrossRefGoogle Scholar
  38. 37.
    N. Gromov and F. Levkovich–Maslyuk, “Y–system, TBA, and quasi–classical strings in AdS4 × CP3,” JHEP, 1006, 088 (2010); arXiv:0912.4911v4 [hep–th] (2009).ADSzbMATHCrossRefGoogle Scholar
  39. 38.
    A. Cavaglià, D. Fioravanti, and R. Tateo, “Discontinuity relations for the AdS4/CFT3 correspondence,” Nucl. Phys. B, 877, 852–884 (2013); arXiv:1307.7587v1 [hep–th] (2013).ADSzbMATHCrossRefGoogle Scholar
  40. 39.
    D. Correa, J. Maldacena, and A. Sever, “The quark anti–quark potential and the cusp anomalous dimension from a TBA equation,” JHEP, 1208, 134 (2012); arXiv:1203.1913v2 [hep–th (2012).ADSCrossRefGoogle Scholar
  41. 40.
    N. Drukker, “Integrable Wilson loops,” JHEP, 1310, 135 (2013); arXiv:1203.1617v2 [hep–th] (2012).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  42. 41.
    N. Gromov and F. Levkovich–Maslyuk, “Quantum spectral curve for a cusped Wilson line in N=4SYM,” JHEP, 1604, 134 (2016); arXiv:1510.02098v1 [hep–th] (2015).ADSzbMATHGoogle Scholar
  43. 42.
    N. Gromov and F. Levkovich–Maslyuk, “Quark–anti–quark potential in N=4SYM,” JHEP, 1612, 122 (2016); arXiv:1601.05679v2 [hep–th] (2016).ADSzbMATHCrossRefGoogle Scholar
  44. 43.
    L. F. Alday, D. Gaiotto, and J. Maldacena, “Thermodynamic bubble ansatz,” JHEP, 1109, 032 (2011); arXiv: 0911.4708v3 [hep–th] (2009).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  45. 44.
    L. F. Alday, J. Maldacena, A. Sever, and P. Vieira, “Y–system for scattering amplitudes,” J. Phys. A: Math. Theor., 43, 485401 (2010); arXiv:1002.2459v2 [hep–th] (2010).zbMATHCrossRefMathSciNetGoogle Scholar
  46. 45.
    L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever, and P. Vieira, “An operator product expansion for polygonal null Wilson loops,” JHEP, 1104, 088 (2011); arXiv:1006.2788v2 [hep–th] (2010).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  47. 46.
    B. Basso, A. Sever, and P. Vieira, “Spacetime and flux tube S–matrices at finite coupling for N =4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett., 111, 091602 (2013); arXiv:1303.1396v1 [hep–th] (2013).ADSCrossRefGoogle Scholar
  48. 47.
    B. Basso, J. Caetano, L. Cordova, A. Sever, and P. Vieira, “OPE for all helicity amplitudes,” JHEP, 1508, 018 (2015); arXiv:1412.1132v1 [hep–th] (2014).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  49. 48.
    D. Fioravanti, S. Piscaglia, and M. Rossi, “Asymptotic bethe ansatz on the GKP vacuum as a defect spin chain: Scattering particles and minimal area Wilson loops,” Nucl. Phys. B, 898, 301–400 (2015); arXiv:1503.08795v2 [hep–th] (2015).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  50. 49.
    B. Basso, S. Caron–Huot, and A. Sever, “Adjoint BFKL at finite coupling: A shortcut from the collinear limit,” JHEP, 1501, 027 (2015); arXiv:1407.3766v2 [hep–th] (2014).ADSCrossRefGoogle Scholar
  51. 50.
    M. Alfimov, N. Gromov, and V. Kazakov, “QCD pomeron from AdS/CFT quantum spectral curve,” JHEP, 1507, 164 (2015); arXiv:1408.2530v4 [hep–th] (2014).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  52. 51.
    N. Gromov, F. Levkovich–Maslyuk, and G. Sizov, “Pomeron eigenvalue at three loops in N=4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett., 115, 251601 (2015); arXiv:1507.04010v2 [hep–th] (2015).ADSCrossRefMathSciNetGoogle Scholar
  53. 52.
    M. Alfimov, N. Gromov, and G. Sizov, “BFKL spectrum of N=4 SYM: non–zero conformal spin,” JHEP, 1807, 181 (2018); arXiv:1802.06908v4 [hep–th] (2018).ADSzbMATHCrossRefGoogle Scholar
  54. 53.
    B. Basso, S. Komatsu, and P. Vieira, “Structure constants and integrable bootstrap in planar N=4 SYM theory,” arXiv:1505.06745v1 [hep–th] (2015).Google Scholar
  55. 54.
    B. Basso, V. Gonçalves, and S. Komatsu, “Structure constants at wrapping order,” JHEP, 1705, 124 (2017); arXiv:1702.02154v1 [hep–th] (2017).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  56. 55.
    Y. Jiang, S. Komatsu, I. Kostov, and D. Serban, “Clustering and the three–point function,” J. Phys. A: Math. Theor., 49, 454003 (2016); arXiv:1604.03575v2 [hep–th] (2016).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  57. 56.
    I. Balitsky, V. Kazakov, and E. Sobko, “Structure constant of twist–2 light–ray operators in the Regge limit,” Phys. Rev. D, 93, 061701 (2016); arXiv:1506.02038v2 [hep–th] (2015).ADSCrossRefMathSciNetGoogle Scholar
  58. 57.
    A. Cavaglià, N. Gromov, and F. Levkovich–Maslyuk, “Quantum spectral curve and structure constants in N=4 SYM: Cusps in the ladder limit,” JHEP, 1810, 060 (2018); arXiv:1802.04237v3 [hep–th] (2018).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  59. 58.
    B. Eden and A. Sfondrini, “Tessellating cushions: Four–point functions in N=4 SYM,” JHEP, 1710, 098 (2017); arXiv:1611.05436v1 [hep–th] (2016).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  60. 59.
    B. Eden, Y. Jiang, D. le Plat, and A. Sfondrini, “Colour–dressed hexagon tessellations for correlation functions and non–planar corrections,” JHEP, 1802, 170 (2018); arXiv:1710.10212v2 [hep–th] (2017).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  61. 60.
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu, and P. Vieira, “Handling handles I: Nonplanar integrability,” arXiv:1711.05326v1 [hep–th] (2017).zbMATHGoogle Scholar
  62. 61.
    T. Fleury and S. Komatsu, “Hexagonalization of correlation functions II: Two–particle contributions,” JHEP, 1802, 177 (2018); arXiv:1711.05327v1 [hep–th] (2017).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  63. 62.
    S. Giombi and S. Komatsu, “Exact correlators on the Wilson loop in N=4 SYM: Localization defect CFT and integrability,” JHEP, 1805, 109 (2018); arXiv:1802.05201v3 [hep–th] (2018).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  64. 63.
    B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat, and A. Sfondrini, “Positivity of hexagon perturbation theory,” arXiv:1806.06051v2 [hep–th] (2018).zbMATHCrossRefGoogle Scholar
  65. 64.
    M. de Leeuw, C. Kristjansen, and K. Zarembo, “One–point functions in defect CFT and integrability,” JHEP, 1508, 098 (2015); arXiv:1506.06958v2 [hep–th] (2015).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  66. 65.
    I. Buhl–Mortensen, M. de Leeuw, C. Kristjansen, and K. Zarembo, “One–point functions in AdS/dCFT from matrix product states,” JHEP, 1602, 052 (2016); arXiv:1512.02532v2 [hep–th] (2015).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  67. 66.
    I. Buhl–Mortensen, M. de Leeuw, A. C. Ipsen, C. Kristjansen, and M. Wilhelm, “One–loop one–point functions in gauge–gravity dualities with defects,” Phys. Rev. Lett., 117, 231603 (2016); arXiv:1606.01886v3 [hep–th] (2016).ADSCrossRefMathSciNetGoogle Scholar
  68. 67.
    T. Harmark and M. Wilhelm, “Hagedorn temperature of AdS5/CFT4 via integrability,” Phys. Rev. Lett., 120, 071605 (2018); arXiv:1706.03074v3 [hep–th] (2017).ADSCrossRefGoogle Scholar
  69. 68.
    T. Harmark and M. Wilhelm, “The Hagedorn temperature of AdS5/CFT4 at finite coupling via the quantum spectral curve,” Phys. Lett. B, 786, 53–58 (2018); arXiv:1803.04416v1 [hep–th] (2016).ADSzbMATHCrossRefGoogle Scholar
  70. 69.
    N. Gromov, V. Kazakov, S. Leurent, and D. Volin, “Quantum spectral curve for planar N=4 super–Yang–Mills theory,” Phys. Rev. Lett., 112, 011602 (2014); arXiv:1305.1939v2 [hep–th] (2013).ADSCrossRefGoogle Scholar
  71. 70.
    N. Gromov, V. Kazakov, S. Leurent, and D. Volin, “Quantum spectral curve for arbitrary state/operator in AdS5/CFT4,” JHEP, 1509, 187 (2015); arXiv:1405.4857v3 [hep–th] (2014).ADSzbMATHCrossRefGoogle Scholar
  72. 71.
    V. Kazakov, S. Leurent, and D. Volin, “T–system on T–hook: Grassmannian solution and twisted quantum spectral curve,” JHEP, 1612, 044 (2016); arXiv:1510.02100v2 [hep–th] (2015).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  73. 72.
    C. Marboe and D. Volin, “The full spectrum of AdS5/CFT4 I: Representation theory and one–loop Q–system,” J. Phys. A: Math. Theor., 51, 165401 (2018); arXiv:1701.03704v3 [hep–th] (2017).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  74. 73.
    A. Cavaglià, D. Fioravanti, N. Gromov, and R. Tateo, “Quantum spectral curve of the N=6 supersymmetric Chern–Simons theory,” Phys. Rev. Lett., 113, 021601 (2014); arXiv:1403.1859v2 [hep–th] (2014).ADSCrossRefGoogle Scholar
  75. 74.
    D. Bombardelli, A. Cavaglià, D. Fioravanti, N. Gromov, and R. Tateo, “The full quantum spectral curve for AdS4/CFT3,” JHEP, 1709, 140 (2017); arXiv:1701.00473v4 [hep–th] (2017).ADSzbMATHCrossRefGoogle Scholar
  76. 75.
    R. Klabbers and S. J. van Tongeren, “Quantum spectral curve for the eta–deformed AdS5xS5 superstring,” Nucl. Phys. B, 925, 252–318 (2017); arXiv:1708.02894v2 [hep–th] (2017).ADSzbMATHCrossRefGoogle Scholar
  77. 76.
    N. Gromov, F. Levkovich–Maslyuk, and G. Sizov, “Quantum spectral curve and the numerical solution of the spectral problem in AdS5/CFT4,” JHEP, 1606, 036 (2016); arXiv:1504.06640v3 [hep–th] (2015).ADSzbMATHCrossRefGoogle Scholar
  78. 77.
    Á. Heged˝us and J. Konczer, “Strong coupling results in the AdS5/CFT4 correspondence from the numerical solution of the quantum spectral curve,” JHEP, 1608, 061 (2016); arXiv:1604.02346v1 [hep–th] (2016).ADSCrossRefGoogle Scholar
  79. 78.
    D. Bombardelli, A. Cavaglià, R. Conti, and R. Tateo, “Exploring the spectrum of planar AdS4/CFT3 at finite coupling,” JHEP, 1804, 117 (2018); arXiv:1803.04748v2 [hep–th] (2018).ADSzbMATHCrossRefGoogle Scholar
  80. 79.
    C. Marboe and D. Volin, “Quantum spectral curve as a tool for a perturbative quantum field theory,” Nucl. Phys. B, 899, 810–847 (2015); arXiv:1411.4758v2 [hep–th] (2014).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  81. 80.
    L. Anselmetti, D. Bombardelli, A. Cavaglià, and R. Tateo, “12 loops and triple wrapping in ABJM theory from integrability,” JHEP, 1510, 117 (2015); arXiv:1506.09089v2 [hep–th] (2015).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  82. 81.
    R. N. Lee and A. I. Onishchenko, “ABJM quantum spectral curve and Mellin transform,” JHEP, 1805, 179 (2018); arXiv:1712.00412v2 [hep–th] (2017).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  83. 82.
    M. A. Bandres, A. E. Lipstein, and J. H. Schwarz, “Studies of the ABJM theory in a formulation with manifest SU(4) R–symmetry,” JHEP, 0809, 027 (2008); arXiv:0807.0880v2 [hep–th] (2008).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  84. 83.
    T. Klose, “Review of AdS/CFT integrability chapter IV.3: N=6 Chern–Simons and STRINGS on AdS4×CP3,” Lett. Math. Phys., 99, 401–423 (2012); arXiv:1012.3999v5 [hep–th] (2010).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  85. 84.
    G. Grignani, T. Harmark, and M. Orselli, “The SU(2)×SU(2) sector in the string dual of N =6 superconformal Chern–Simons theory,” Nucl. Phys. B, 810, 115–134 (2009); arXiv:0806.4959v4 [hep–th] (2008).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  86. 85.
    A. V. Kotikov and L. N. Lipatov, “DGLAP and BFKL equations in the N=4 supersymmetric gauge theory,” Nucl. Phys. B, 661, 19–61 (2003); Erratum, 685, 405–407 (2004); arXiv:hep–ph/0208220v3 (2002).ADSzbMATHCrossRefGoogle Scholar
  87. 86.
    A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, and V. N. Velizhanin, “Three loop universal anomalous dimension of the Wilson operators in N=4 SUSY Yang–Mills model,” Phys. Lett. B, 595, 521–529 (2004); Erratum, 632, 754–756 (2006); arXiv:hep–th/0404092v5 (2004).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  88. 87.
    M. Beccaria and G. Macorini, “QCD properties of twist operators in the N =6 Chern–Simons theory,” JHEP, 0906, 008 (2009); arXiv:0904.2463v3 [hep–th] (2009).ADSCrossRefMathSciNetGoogle Scholar
  89. 88.
    M. Beccaria, F. Levkovich–Maslyuk, and G. Macorini, “On wrapping corrections to GKP–like operators,” JHEP, 1103, 001 (2011); arXiv:1012.2054v2 [hep–th] (2010).ADSzbMATHCrossRefGoogle Scholar
  90. 89.
    J. Ablinger, J. Blümlein, and C. Schneider, “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms,” J. Math. Phys., 54, 082301 (2013); arXiv:1302.0378v1 [math–ph] (2013).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  91. 90.
    J. Ablinger, J. Blümlein, and C. Schneider, “Harmonic sums and polylogarithms generated by cyclotomic polynomials,” J. Math. Phys., 52, 102301 (2011); arXiv:1105.6063v1 [math–ph] (2011).ADSzbMATHCrossRefMathSciNetGoogle Scholar
  92. 91.
    A. B. Zamolodchikov, “‘Fishing–net’ diagrams as a completely integrable system,” Phys. Lett. B, 97, 63–66 (1980).ADSCrossRefMathSciNetGoogle Scholar
  93. 92.
    D. Chicherin, S. Derkachov, and A. P. Isaev, “Conformal group: R–matrix and star–triangle relation,” JHEP, 1304, 020 (2013); arXiv:1206.4150v2 [math–ph] (2013).ADSzbMATHCrossRefGoogle Scholar
  94. 93.
    Ö. Gürdoğan and V. Kazakov, “New integrable 4D quantum field theories from strongly deformed planar N=4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett., 117, 201602 (2016); Addendum, 117, 259903 (2016); arXiv:1512.06704v3 [hep–th] (2015).ADSCrossRefMathSciNetGoogle Scholar
  95. 94.
    J. Caetano, O. Gürdoğan, and V. Kazakov, “Chiral limit of N=4 SYM and ABJM and integrable Feynman graphs,” arXiv:1612.05895v3 [hep–th] (2016).zbMATHGoogle Scholar
  96. 95.
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, and D.–l. Zhong, “Yangian symmetry for bi–scalar loop amplitudes,” JHEP, 1805, 003 (2017); arXiv:1704.01967v1 [hep–th] (2017).ADSzbMATHGoogle Scholar
  97. 96.
    B. Basso and L. J. Dixon, “Gluing ladder Feynman diagrams into fishnets,” Phys. Rev. Lett., 119, 071601 (2017); arXiv:1705.03545v2 [hep–th] (2017).ADSCrossRefMathSciNetGoogle Scholar
  98. 97.
    N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, and G. Sizov, “Integrability of conformal fishnet theory,” JHEP, 1801, 095 (2017); arXiv:1706.04167v2 [hep–th] (2017).ADSzbMATHGoogle Scholar
  99. 98.
    D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, and D.–l. Zhong, “Yangian symmetry for fishnet Feynman graphs,” Phys. Rev. D, 96, 121901 (2017); arXiv:1708.00007v1 [hep–th] (2017).ADSCrossRefMathSciNetGoogle Scholar
  100. 99.
    D. Grabner, N. Gromov, V. Kazakov, and G. Korchemsky, “Strongly γ–deformed N=4 SYM as an integrable CFT,” Phys. Rev. Lett., 120, 111601 (2018); arXiv:1711.04786v3 [hep–th] (2017).ADSCrossRefMathSciNetGoogle Scholar
  101. 100.
    V. Kazakov and E. Olivucci, “Bi–scalar integrable CFT at any dimension,” Phys. Rev. Lett., 121, 131601 (2018); arXiv:1801.09844v3 [hep–th] (2018).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow OblastRussia
  4. 4.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations