Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1779–1796 | Cite as

Higher Hirota Difference Equations and Their Reductions

  • A. K. PogrebkovEmail author
Article
  • 5 Downloads

Abstract

We previously proposed an approach for constructing integrable equations based on the dynamics in associative algebras given by commutator relations. In the framework of this approach, evolution equations determined by commutators of (or similarity transformations with) functions of the same operator are compatible by construction. Linear equations consequently arise, giving a base for constructing nonlinear integrable equations together with the corresponding Lax pairs using a special dressing procedure. We propose an extension of this approach based on introducing higher analogues of the famous Hirota difference equation. We also consider some (1+1)-dimensional discrete integrable equations that arise as reductions of either the Hirota difference equation itself or a higher equation in its hierarchy.

Keywords

integrability commutator identity Hirota difference equation higher integrable equation reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hirota, “Nonlinear partial difference equations: II. Discrete-time Toda equations,” J. Phys. Soc. Japan, 43, 2074–2078 (1977).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Hirota, “Discrete analogue of a generalized Toda equation,” J. Phys. Soc. Japan, 50, 3785–3791 (1981).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Miwa, “On Hirota’s difference equation,” Proc. Japan Acad. Ser. A, 58, 9–12 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. V. Bogdanov and B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies: I. Generalized KP hierarchy,” J. Math. Phys., 39, 4683–4700 (1998)Google Scholar
  5. 4a.
    “Analytic-bilinear approach to integrable hierarchies: II. Multicomponent KP and 2D Toda lattice hierarchies,” J. Math. Phys., 39, 4701–4728 (1998).Google Scholar
  6. 5.
    A. V. Zabrodin, “A survey of Hirota’s difference equations,” Theor. Math. Phys., 113, 1347–1392 (1997).CrossRefGoogle Scholar
  7. 6.
    A. V. Zabrodin, “Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz,” Theor. Math. Phys., 155, 567–584 (2008); arXiv:0705.4006v1 [hep-th] (2007).CrossRefzbMATHGoogle Scholar
  8. 7.
    S. Saito, “Octahedral structure of the Hirota–Miwa equation,” J. Nonlinear Math. Phys., 19, 1250032 (2012).ADSMathSciNetzbMATHGoogle Scholar
  9. 8.
    J. J. C. Nimmo, “On a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Gen., 39, 5053–5065 (2006).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 9.
    C. R. Gibson, J. J. C. Nimmo, and Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Theor., 40, 12607–12617 (2007); arXiv:nlin/0702020v1 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 10.
    A. Doliwa, “The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system,” Phys. Lett. A, 375, 1219–1224 (2011); arXiv:1006.3380v1 [nlin.SI] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 11.
    I. Krichever, P. Wiegmann, and A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems,” Commun. Math. Phys., 193, 373–396 (1998); arXiv:hep-th/9704090v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 12.
    A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations,” Theor. Math. Phys., 154, 405–417 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 13.
    A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra,” St. Petersburg Math. J., 22, 473–483 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 14.
    A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation, and its reductions,” Theor. Math. Phys., 187, 823–834 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 15.
    V. E. Zakharov and E. I. Schulman, “Degenerative dispersion laws, motion invariants, and kinetic equations,” Phys. D, 1, 192–202 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 16.
    A. K. Pogrebkov, “2D Toda chain and associated commutator identity,” in: Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar 2006–2007 (Amer. Math. Soc. Transl. Ser. 2, Vol. 224, V. M. Buchstaber and I. M. Krichever, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 261–270.Google Scholar
  18. 17.
    F. W. Nijhoff, H. W. Capel, G. L. Wiersma, and G. R. W. Quispel, “Bäcklund transformations and threedimensional lattice equations,” Phys. Lett. A, 105, 267–272 (1984).ADSMathSciNetCrossRefGoogle Scholar
  19. 18.
    F. Nijhoff and H. Capel, “The discrete Korteweg–de Vries equation,” Acta Appl. Math., 39, 133–158 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 19.
    S. Konstantinou-Rizos and T. E. Kouloukas, “A noncommutative discrete potential KdV lift,” J. Math. Phys., 59, 063506 (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 20.
    A. K. Pogrebkov, “Symmetries of the Hirota difference equation,” SIGMA, 13, 053 (2017).MathSciNetzbMATHGoogle Scholar
  22. 21.
    V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I,” Funct. Anal. Appl., 8, 226–235 (1974).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations