Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1771–1778 | Cite as

Determinant Representations for Scalar Products in the Algebraic Bethe Ansatz

  • N. A. SlavnovEmail author
Article
  • 11 Downloads

Abstract

We study integrable models with gl(2|1) symmetry that are solvable by the nested algebraic Bethe ansatz. We obtain a new determinant representation for scalar products of twisted and ordinary on-shell Bethe vectors. The obtained representation leads to a new formula for the scalar products in models with gl(2) symmetry.

Keywords

algebraic Bethe ansatz scalar product graded model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method: I,” Theor. Math. Phys., 40, 688–706 (1979).CrossRefzbMATHGoogle Scholar
  2. 2.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).CrossRefzbMATHGoogle Scholar
  3. 3.
    L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proc. Les Houches Summer School, Session LXIV, 1 August–8 September 1995, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219.Google Scholar
  4. 4.
    V. E. Korepin, “Calculation of norms of Bethe wave functions,” Commun. Math. Phys., 86, 391–418 (1982).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys., 94, 67–92 (1984).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A. G. Izergin, “Partition function of the six-vertex model in a finite volume,” Sov. Phys. Dokl., 32, 878–879 (1987).ADSzbMATHGoogle Scholar
  7. 7.
    N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,” Theor. Math. Phys., 79, 502–508 (1989).CrossRefGoogle Scholar
  8. 8.
    N. Kitanine, J. M. Maillet, and V. Terras, “Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field,” Nucl. Phys. B, 567, 554–582 (2000); arXiv:math-ph/9907019v1 (1999).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    N. Kitanine, J. M. Maillet, N. A. Slavnov, and V. Terras, “Spin–spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field,” Nucl. Phys. B, 641, 487–518 (2002); arXiv:hep-th/0201045v1 (2002).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions,” J. Stat. Mech., 2009, P04003 (2009); arXiv:0808.0227v2 [math-ph] (2008).Google Scholar
  11. 11.
    F. Göhmann, A. Klümper, and A. Seel, “Integral representations for correlation functions of the XXZ chain at finite temperature,” J. Phys. A: Math. Gen., 37, 7625–7652 (2004); arXiv:hep-th/0405089v2 (2004).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    F. Göhmann, A. Klümper, and A. Seel, “Integral representation of the density matrix of the XXZ chain at finite temperatures,” J. Phys. A: Math. Gen., 38, 1833–1841 (2005); arXiv:cond-mat/0412062v1 (2004).ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Seel, T. Bhattacharyya, F. Göhmann, and A. Klümper, “A note on the spin-1/2 XXZ chain concerning its relation to the Bose gas,” J. Stat. Mech, 2007, P08030 (2007); arXiv:0705.3569v3 [cond-mat.stat-mech] (2007).Google Scholar
  14. 14.
    J. S. Caux and J. M. Maillet, “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field,” Phys. Rev. Lett., 95, 077201 (2005); arXiv:cond-mat/0502365v1 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, and I. Affleck, “Dynamical spin structure factor for the anisotropic spin-1/2 Heisenberg chain,” Phys. Rev. Lett., 96, 257202 (2006); arXiv:condmat/0603681v2 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, and I. Affleck, “Dynamical structure factor at small q for the XXZ spin-1/2 chain,” J. Stat. Mech., 2007, P08022 (2007); arXiv:0706.4327v3 [condmat. str-el] (2007).Google Scholar
  17. 17.
    J. S. Caux, P. Calabrese, and N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas,” J. Stat. Mech., 2007, P01008 (2007); arXiv:cond-mat/0611321v1 (2006).Google Scholar
  18. 18.
    S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models,” J. Stat. Mech., 2012, P10017 (2012); arXiv:1207.0956v2 [math-ph] (2012).Google Scholar
  19. 19.
    N. A. Slavnov, “Scalar products in GL(3)-based models with trigonometric R-matrix: Determinant representation,” J. Stat. Mech., 2015, P03019 (2015); arXiv:1501.06253v2 [math-ph] (2015).Google Scholar
  20. 20.
    A. Hutsalyuk, A. Lyashik, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Scalar products of Bethe vectors in models with gl(21) symmetry 2: Determinant representation,” J. Phys. A, 50, 034004 (2017); arXiv:1605.09189v1 [math-ph] (2016).ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    B. Pozsgay, W.-V. van Oei, and M. Kormos, “On form factors in nested Bethe Ansatz systems,” J. Phys. A: Math. Gen., 2012, 465007; arXiv:1204.4037v2 [cond-mat.stat-mech] (2012).Google Scholar
  22. 22.
    S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Form factors in SU(3)-invariant integrable models,” J. Stat. Mech., 2013, P04033 (2013); arXiv:1211.3968v2 [math-ph] (2012).Google Scholar
  23. 23.
    S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Form factors in quantum integrable models with GL(3)-invariant R-matrix,” Nucl. Phys. B, 881, 343–368 (2014); arXiv:1312.1488v2 [math-ph] (2013).ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Zero modes method and form factors in quantum integrable models,” Nucl. Phys. B, 893, 459–481 (2015); arXiv:1412.6037v3 [math-ph] (2014).ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “GL(3)-based quantum integrable composite models: II. Form factors of local operators,” SIGMA, 11, 064 (2015); arXiv:1502.01966v3 [math-ph] (2015).zbMATHGoogle Scholar
  26. 26.
    A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, and N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(21)-invariant integrable models,” Nucl. Phys. B, 911, 902–927 (2016); arXiv:1607.04978v1 [math-ph] (2016).ADSCrossRefGoogle Scholar
  27. 27.
    J. Fuksa and N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models,” J. Stat. Mech., 2017, 043106 (2017); arXiv:1701.05866v1 [math-ph] (2017).CrossRefGoogle Scholar
  28. 28.
    P. P. Kulish and E. K. Sklyanin, “On solutions of the Yang–Baxter equation,” J. Soviet Math., 19, 1596–1620 (1982).CrossRefzbMATHGoogle Scholar
  29. 29.
    S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Bethe vectors for models based on super-Yangian Y (gl(mn)),” J. Integrab. Syst., 2, 1–31 (2017); arXiv:1604.02311v2 [math-ph] (2016).CrossRefzbMATHGoogle Scholar
  30. 30.
    A. Hutsalyuk, A. Lyashik, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Multiple actions of the monodromy matrix in gl(21)-invariant integrable models,” SIGMA, 12, 099 (2016); arXiv:1605.06419v2 [math-ph] (2016).zbMATHGoogle Scholar
  31. 31.
    N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, “A form factor approach to the asymptotic behavior of correlation functions,” J. Stat. Mech., 2011, P12010 (2011); arXiv:1110.0803v2 [hep-th] (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations