Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1755–1770 | Cite as

Calogero–Moser Model and R-Matrix Identities

  • A. V. ZotovEmail author


We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.


elliptic integrable system long-range spin chain associative Yang–Baxter equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Fomin and A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus,” in: Advances in Geometry (Progr. Math., Vol. 172, J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, and P. Xu, eds.), Birkhäuser, Boston, Mass. (1999), pp. 147–182Google Scholar
  2. 1a.
    M. Aguiar, “Infinitesimal Hopf algebras,” in: New Trends in Hopf Algebra Theory(Contemp. Math., Vol. 267, N. Andruskiewitsch and W. R. F. Santos, eds.), Amer. Math. Soc., Providence, R. I. (2000), pp. 1–29.Google Scholar
  3. 2.
    A. Polishchuk, “Classical Yang–Baxter equation and the A∞-constraint,” Adv. Math., 168, 56–95 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 3.
    R. J. Baxter, “Partition function of the eight-vertex lattice model,” Ann. Phys., 70, 193–228 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 3a.
    A. A. Belavin, “Dynamical symmetry of integrable quantum systems,” Nucl. Phys. B, 180, 189–200 (1981).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 4.
    A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer, Berlin (1976); D. Mumford, Tata Lectures on Theta, Vols. 1 and 2, Birkhäuser, Boston, Mass. (1983, 1984).CrossRefzbMATHGoogle Scholar
  7. 5.
    J. D. Fay, Theta Functions on Riemann Surfaces (Lect. Notes Math., Vol. 352), Springer, Berlin (1973).CrossRefzbMATHGoogle Scholar
  8. 6.
    V. V. Bazhanov and Y. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations,” in: Proceedings of the International Seminar on High Energy Physics and Quantum Field Theory (Protvino, June 1983), Inst. High Energy Phys., Protvino (1983), pp. 52–54Google Scholar
  9. 6a.
    L. A. Takhtadzhyan, “Solutions of the triangle equations with Zn×Zn-symmetry as the matrix analogues of the Weierstrass zeta and sigma functions [in Russian],” Zap. Nauchn. Sem. LOMI, 133, 258–276 (1984).MathSciNetzbMATHGoogle Scholar
  10. 7.
    A. Levin, M. Olshanetsky, and A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations,” JHEP, 10, 109 (2014); arXiv:1408.6246v3 [hep-th] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 8.
    A. M. Levin, M. A. Olshanetsky, and A. V. Zotov, “Quantum Baxter–Belavin R-matrices and multidimensional Lax pairs for Painlevé VI,” Theor. Math. Phys., 184, 924–939 (2015).CrossRefzbMATHGoogle Scholar
  12. 9.
    A. Levin, M. Olshanetsky, and A. Zotov, “Yang–Baxter equations with two Planck constants,” J. Phys. A: Math. Theor., 49, 014003 (2016); arXiv:1507.02617v2 [math-ph] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 10.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method: I,” Theor. Math. Phys., 40, 688–706 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 11.
    F. Calogero, “Solution of a three-body problem in one dimension,” J. Math. Phys., 10, 2191–2196 (1969)ADSCrossRefGoogle Scholar
  15. 11a.
    J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” Adv. Math., 16, 197–220 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 11b.
    M. A. Olshanetsky and A. M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras,” Invent. Math., 37, 93–108 (1976).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 12.
    K. Hikami and M. Wadati, “Integrable spin-1/2 particle systems with long-range interactions,” Phys. Lett. A, 173, 263–266 (1993)ADSMathSciNetCrossRefGoogle Scholar
  18. 12a.
    “Integrability of Calogero–Moser spin system,” J. Phys. Soc. Japan, 62, 469–472 (1993).Google Scholar
  19. 13.
    V. I. Inozemtsev and R. Sasaki, “Universal Lax pairs for spin Calogero–Moser models and spin exchange models,” J. Phys. A: Math. Gen., 34, 7621–7632 (2001); arXiv:hep-th/0105164v1 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 14.
    V. I. Inozemtsev, “On the connection between the one-dimensional S = 1/2 Heisenberg chain and Haldane–Shastry model,” J. Statist. Phys., 59, 143–1155 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 15.
    I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funct. Anal. Appl., 14, 282–290 (1980).CrossRefzbMATHGoogle Scholar
  22. 16.
    A. Grekov and A. Zotov, “On R-matrix valued Lax pairs for Calogero–Moser models,” J. Phys. A: Math. Theor., 51, 315202 (2018); arXiv:1801.00245v2 [math-ph] (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 17.
    A. V. Zotov, “Higher-order analogues of the unitarity condition for quantum R-matrices,” Theor. Math. Phys., 189, 1554–1562 (2016); arXiv:1511.02468v2 [math-ph] (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 18.
    B. Sutherland, “Exact results for a quantum many-body problem in one dimension,” Phys. Rev. A, 4, 2019–2021 (1971)ADSCrossRefGoogle Scholar
  25. 18a.
    “Exact results for a quantum many-body problem in one dimension: II,” Phys. Rev. A, 5, 1372–1376 (1972)Google Scholar
  26. 18b.
    M. A. Olshanetsky and A. M. Perelomov, “Quantum integrable systems related to Lie algebras,” Phys. Rep., 94, 313–404 (1983)ADSMathSciNetCrossRefGoogle Scholar
  27. 18c.
    I. Cherednik, “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations,” Adv. Math., 106, 65–95 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 19.
    K. Hikami and M. Wadati, “Integrability of Calogero–Moser spin system,” J. Phys. Soc. Japan, 62, 469–472 (1993).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 20.
    J. Gibbons and T. Hermsen, “A generalization of the Calogero–Moser systems,” Phys. D, 11, 337–348 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 20a.
    S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system,” Phys. Lett. A, 111, 101–103 (1985).ADSMathSciNetCrossRefGoogle Scholar
  31. 21.
    A. Grekov, I. Sechin, and A. Zotov, “Generalized model of interacting tops,” (to appear).Google Scholar
  32. 22.
    E. Billey, J. Avan, and O. Babelon, “The r-matrix structure of the Euler–Calogero–Moser model,” Phys. Lett. A, 186, 114–118 (1994); arXiv:hep-th/9312042v1 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 22a.
    “Exact Yangian symmetry in the classical Euler–Calogero–Moser model,” Phys. Lett. A, 188, 263–271 (1994); arXiv:hep-th/9401117v1 (1994).Google Scholar
  34. 23.
    E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation,” Funct. Anal. Appl., 16, 263–270 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 24.
    L. A. Takhtajan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).Google Scholar
  36. 25.
    A. Levin, M. Olshanetsky, and A. Zotov, “Relativistic classical integrable tops and quantum R-matrices,” JHEP, 1407, 012 (2014); arXiv:1405.7523v3 [hep-th] (2014).ADSCrossRefGoogle Scholar
  37. 26.
    A. Levin, M. Olshanetsky, and A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation,” J. Phys. A: Math. Theor., 49, 395202 (2016); arXiv:1603.06101v2 [math-ph] (2016).CrossRefzbMATHGoogle Scholar
  38. 27.
    A. P. Polychronakos, “Calogero–Moser models with noncommutative spin interactions,” Phys. Rev. Lett., 89, 126403 (2002); arXiv:hep-th/0112141v3 (2001)ADSCrossRefGoogle Scholar
  39. 27a.
    “Generalized Calogero models through reductions by discrete symmetries,” Nucl. Phys. B, 543, 485–498 (1999); arXiv:hep-th/9810211v1 (1998)Google Scholar
  40. 27b.
    “The physics and mathematics of Calogero particles,” J. Phys. A: Math. Gen., 39, 12793–12845 (2006); arXiv:hep-th/0607033v2 (2006).Google Scholar
  41. 28.
    A. V. Zotov and A. M. Levin, “Integrable model of interacting elliptic tops,” Theor. Math. Phys., 146, 45–52 (2006)CrossRefzbMATHGoogle Scholar
  42. 28a.
    A. V. Zotov and A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems,” Theor. Math. Phys., 177, 1281–1338 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 29.
    A. Levin, M. Olshanetsky, A. Smirnov, and A. Zotov, “Characteristic classes of SL(N,C)-bundles and quantum dynamical elliptic R-matrices,” J. Phys. A: Math. Theor., 46, 035201 (2013); arXiv:1208.5750v1 [math-ph] (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 30.
    A. Levin, M. Olshanetsky, A. Smirnov, and A. Zotov, “Characteristic classes and Hitchin systems: General construction,” Commun. Math. Phys., 316, 1–44 (2012); arXiv:1006.0702v4 [math-ph] (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 30a.
    A. Levin, M. Olshanetsky, A. Smirnov, and A. Zotov, “Calogero–Moser systems for simple Lie groups and characteristic classes of bundles,” J. Geom. Phys., 62, 1810–1850 (2012); arXiv:1007.4127v2 [math-ph] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 31.
    A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations,” Modern Phys. Lett. A, 32, 1750169 (2017); arXiv:1706.05601v3 [math-ph] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 32.
    F. D. M. Haldane, “Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange,” Phys. Rev. Lett., 60, 635–638 (1988)ADSCrossRefGoogle Scholar
  48. 32a.
    B. S. Shastry, “Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with long-ranged interactions,” Phys. Rev. Lett., 60, 639–642 (1988).ADSCrossRefGoogle Scholar
  49. 33.
    A. P. Polychronakos, “Lattice integrable systems of Haldane–Shastry type,” Phys. Rev. Lett., 70, 2329–2331 (1993); arXiv:hep-th/9210109v1 (1992).ADSCrossRefGoogle Scholar
  50. 34.
    I. Sechin and A. Zotov, “R-matrix-valued Lax pairs and long-range spin chains,” Phys. Lett. B, 781, 1–7 (2018); arXiv:1801.08908v3 [math-ph] (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 35.
    D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, “Yang–Baxter equation in long-range interacting systems,” J. Phys. A: Math. Gen., 26, 5219–5236 (1993).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 36.
    A. Grekov, I. Sechin, and A. Zotov, “Interacting integrable tops and long range spin chains,” (to appear).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations