Advertisement

Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1714–1726 | Cite as

Integrability of a Multicomponent Coupled Dispersionless Integrable System

  • H. Wajahat
  • A. RiazEmail author
  • M. ul Hassan
Article
  • 11 Downloads

Abstract

We present a multicomponent coupled dispersionless integrable system and show that it is integrable in the sense of the existence of a Lax pair representation and also the existence of an infinite sequence of conserved quantities, a Darboux transformation, and soliton solutions.

Keywords

integrable system soliton Darboux transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pietrzyk, I. Kanattšikov, and U. Bandelow, “On the propagation of vector ultra-short pulses,” J. Nonlinear Math. Phys., 15, 162–170 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (London Math. Soc. Lect. Note Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).zbMATHGoogle Scholar
  3. 3.
    Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions,” J. Math. Phys., 52, 123702 (2011); arXiv:1111.1792v2 [nlin.SI] (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T. Tsuchida and M. Wadati, “Multi-field integrable systems related to WKI-type eigenvalue problems,” J. Phys. Soc. Japan, 68, 2241–2245 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge (2002).CrossRefzbMATHGoogle Scholar
  6. 6.
    R. Hirota, Direct Method in Soliton Theory (Cambridge Tracts Math., Vol. 155), Cambridge Univ. Press, Cambridge (2004).CrossRefzbMATHGoogle Scholar
  7. 7.
    V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).CrossRefzbMATHGoogle Scholar
  8. 8.
    C. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (Math. Phys. Stud., Vol. 26), Springer, Berlin (2005).CrossRefzbMATHGoogle Scholar
  9. 9.
    C. X. Li and J. J. C. Nimmo, “Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation,” Proc. R. Soc. London Ser. A, 464, 951–966 (2008); arXiv:0711.2594v2 [nlin.SI] (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system,” J. Phys. A: Math. Theor., 42, 065203 (2009); arXiv:0912.1671v1 [math-ph] (2009).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Y. Shi, J. J. C. Nimmo, and D. Zhang, “Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation,” J. Phys. A: Math. Theor., 47, 025205 (2014).Google Scholar
  12. 12.
    H. W. A. Riaz, and M. Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system,” Commun. Nonlinear Sci. Numer. Simul., 48, 387–397 (2017).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. W. A. Riaz and M. Hassan, “Multisoliton solutions of integrable discrete and semi-discrete principal chiral equations,” Commun. Nonlinear Sci. Numer. Simul., 54, 416–427 (2018).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. W. A. Riaz and M. Hassan, “A discrete generalized coupled dispersionless integrable system and its multisoliton solutions,” J. Math. Anal. Appl., 458, 1639–1652 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. Konno and H. Oono, “New coupled integrable dispersionless equations,” J. Phys. Soc. Japan, 63, 377–378 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Adler and A. B. Shabat, “Toward a theory of integrable hyperbolic equations of third order,” J. Phys. A: Math. Theor., 45, 395207 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Kakuhata and K. Konno, “Lagrangian, Hamiltonian, and conserved quantities for coupled integrable, dispersionless equations,” J. Phys. Soc. Japan, 65, 1–2 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Kakuhata and K. Konno, “A generalization of coupled integrable, dispersionless system,” J. Phys. Soc. Japan, 65, 340–341 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    T. Alagesan and K. Porsezian, “Painleve analysis and the integrability properties of coupled integrable dispersionless equations,” Chaos Solitons Fractals, 7, 1209–1212 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    T. Alagesan and K. Porsezian, “Singularity structure analysis and Hirota’s bilinearisation of the coupled integrable dispersionless equations,” Chaos Solitons Fractals, 8, 1645–1650 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. C. Anco and T. Wolf, “Some symmetry classifications of hyperbolic vector evolution equations,” J. Nonlinear Math. Phys., 12, suppl. 1, 13–31 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    T. Tsuchida, “New reductions of integrable matrix partial differential equations: sp(m)-invariant systems,” J. Math. Phys., 51, 053511 (2010); arXiv:0712.4373v5 [nlin.SI] (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    V. E. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method,” Sov. Phys. JETP, 47, 1017–1027 (1978).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations