Theoretical and Mathematical Physics

, Volume 197, Issue 3, pp 1691–1700 | Cite as

The 1/N-Expansion for Flag-Manifold σ-Models

  • D. V. BykovEmail author


We derive the Feynman rules for the 1/N-expansion of the simplest σ-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) × U(1) × U(N − 2)).


σ-model Feynman rule 1/N-expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bykov, “Complex structures and zero-curvature equations for σ-models,” Phys. Lett. B, 760, 341–344 (2016); arXiv:1605.01093v1 [hep-th] (2016).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints,” Commun. Math. Phys., 46, 207–221 (1976).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. E. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models in field theory integrable by the inverse problem technique,” Sov. Phys. JETP, 47, 1017–1027 (1978).ADSGoogle Scholar
  4. 4.
    H. Eichenherr and M. Forger, “On the dual symmetry of the non-linear sigma models,” Nucl. Phys. B, 155, 381–393 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    D. V. Bykov, “A gauged linear formulation for flag-manifold σ-models,” Theor. Math. Phys., 193, 1737–1753 (2017).CrossRefzbMATHGoogle Scholar
  6. 6.
    E. Cremmer and J. Scherk, “The supersymmetric non-linear σ-model in four dimensions and its coupling to supergravity,” Phys. Lett. B, 74, 341–434 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    A. D’Adda, M. Lüscher, and P. Di Vecchia, “A 1/n expandable series of non-linear σ-models with instantons,” Nucl. Phys. B, 146, 63–76 (1978).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Donagi and E. Sharpe, “GLSM’s for partial flag manifolds,” J. Geom. Phys., 58, 1662–1692 (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. Bykov, “Integrable properties of σ-models with non-symmetric target spaces,” Nucl. Phys. B, 894, 254–267 (2015); arXiv:1412.3746v1 [hep-th] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Bykov, “Classical solutions of a flag manifold σ-model,” Nucl. Phys. B, 902, 292–301 (2016); arXiv: 1506.08156v1 [hep-th] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. M. Polyakov, Gauge Fields and Strings [in Russian], RKdD, Izhevsk (1999); English transl. prev. ed. (Contemp. Concepts Phys., Vol. 3), Harwood Academic, Chur (1987).Google Scholar
  12. 12.
    A. D’Adda, P. Di Vecchia, and M. Lüscher, “Confinement and chiral symmetry breaking in CPn−1 models with quarks,” Nucl. Phys. B, 152, 125–144 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    M. Lüscher, “Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear sigma model,” Nucl. Phys. B, 135, 1–19 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Y. Goldschmidt and E. Witten, “Conservation laws in some two-dimensional models,” Phys. Lett. B, 91, 392–396 (1980).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Abdalla, M. C. B. Abdalla, and M. Gomes, “Anomaly in the nonlocal quantum charge of the CP(n−1) model,” Phys. Rev. D, 23, 1800–1805 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    E. Abdalla, M. Gomes, and M. Forger, “On the origin of anomalies in the quantum non-local charge for the generalized non-linear sigma models,” Nucl. Phys. B, 210, 181–192 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    E. Abdalla, M. C. B. Abdalla, and M. Gomes, “Anomaly cancellations in the supersymmetric CPn−1 model,” Phys. Rev. D, 25, 452–460 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    E. Abdalla, M. C. B. Abdalla, and M. Gomes, “On the nonlocal charge of the CPn−1 model and its supersymmetric extension to all orders,” Phys. Rev. D, 27, 825–836 (1983).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations