Advertisement

Theoretical and Mathematical Physics

, Volume 196, Issue 3, pp 1347–1365 | Cite as

Separation of Variables in the Anisotropic Shottky–Frahm Model

  • T. V. Skrypnyk
Article
  • 23 Downloads

Abstract

We construct separated coordinates for the completely anisotropic Shottky–Frahm model on an arbitrary coadjoint orbit of SO(4). We find explicit reconstruction formulas expressing dynamical variables in terms of the separation coordinates and write the equations of motion in the Abel-type form.

Keywords

integrable system separation of variables classical top 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Frahm, “Ueber gewisse Differentialgleichungen,” Math. Ann., 8, No. 1, 35–44 (1874).CrossRefzbMATHGoogle Scholar
  2. 2.
    F. Shottky, “Uber das analitische Problem der Rotation eines starren Körpers in Raume von vier Dimensionen,” Sitzunber. Königl. Preuss. Akad. Wiss., 13, 227–232 (1891).Google Scholar
  3. 3.
    S. Manakov, “Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body,” Funct. Anal. Appl., 10, 328–329 (1976).CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Perelomov, “Motion of four-dimensional rigid body around a fixed point: An elementary approach I,” J. Phys. A: Math. Gen., 38, L801–L807 (2005).Google Scholar
  5. 5.
    A. Clebsch, “Ueber die Bewegung eines Körpers in einer Flüssigkeit,” Math. Ann., 3, 238–261 (1871).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Kötter, “Ueber die Bewegung eines festen Körpers in einer Flüssigkeit,” J. Reine Angew. Math., 1892, No. 109, 51–81, 89–111 (2009).zbMATHGoogle Scholar
  7. 7.
    E. Sklyanin and T. Takebe, “Separation of variables in the elliptic Gaudin model,” Commun. Math. Phys., 204, 17–38 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Gaudin, “Diagonalisation d’une classe d’Hamiltoniens de spin,” J. Physique, 37, 1087–1098 (1976).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. G. Marikhin and V. V. Sokolov, “Separation of variables on a non-hyperelliptic curve,” Reg. Chaot. Dyn., 10, 59–75 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Magri and T. Skrypnyk, “The Clebsch system,” arXiv:1512.04872v1 [nlin.SI] (2015).Google Scholar
  11. 11.
    F. Magri, “A simple model of the integrable Hamiltonian equation,” J. Math. Phys., 19, 1156 (1978).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    G. Falqui, F. Magri, and M. Pedroni, “Bihamiltonian geometry and separation of variables for Toda lattices,” J. Nonlinear Math. Phys., 8, suppl., 118–127 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Falqui and M. Pedroni, “On a Poisson reduction for Gel’fand–Zakharevich manifolds,” Rep. Math. Phys., 50, 395–407 (2002).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. Haine, “Geodesic flow on SO(4) and abelian surfaces,” Math. Ann., 263, 435–472 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. Z. Enolsky and Yu. N. Fedorov, “Algebraic description of Jacobians isogeneous to certain Prym varieties with polarization (1, 2),” Exp. Math., 27, 147–178 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Fedorov, private communications, article in preparation.Google Scholar
  17. 17.
    A. Tsiganov, “On the invariant separated variables,” Reg. Chaot. Dyn., 6, 307–326 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. Falqui, “A note on the rotationally symmetric SO(4) Euler rigid body,” SIGMA, 3, 032 (2007).MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. Sklyanin, “Separation of variables: New trends,” Progr. Theor. Phys. Suppl., 118, 35–60 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.University of Milano–BicoccaMilanoItaly
  2. 2.Bogolyubov Institute for Theoretical PhysicsKievUkraine

Personalised recommendations