Advertisement

Theoretical and Mathematical Physics

, Volume 196, Issue 3, pp 1282–1293 | Cite as

Chiral Trace Relations in \(\mathcal{N}=2^*\) Supersymmetric Gauge Theories

  • A. Fachechi
  • G. Macorini
  • M. Beccaria
Article
  • 4 Downloads

Abstract

We analyze the chiral ring in Ω-deformed \(\mathcal{N}=2^*\) supersymmetric gauge theories. Applying localization techniques, we derive closed identities for the vacuum expectation values of chiral trace operators. In the SU(2) case, we provide an AGT framework to identify chiral trace operators and the system of local integrals of motion in the related two-dimensional conformal field theory. In this setup, we predict some universal terms appearing in chiral trace identities.

Keywords

supersymmetric gauge theory nonperturbative effect integrability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Sohnius and C. PWest, “Conformal invariance in N=4 supersymmetric Yang–Mills theory,” Phys. Lett. B, 100, 245–250 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    S. Mandelstam, “Light-cone superspace and the ultraviolet finiteness of the N=4 model,” Nucl. Phys. B, 213, 149–168 (1983).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Seiberg, “Supersymmetry and nonperturbative beta functions,” Phys. Lett. B, 206, 75–80 (1988).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Seiberg and E. Witten, “Electric–magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang–Mills theory,” Nucl. Phys. B, 426, 19–52 (1994); Erratum, 430, 485–486 (1994); arXiv:hepth/9407087v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD,” Nucl. Phys. B, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Montonen and D. Olive, “Magnetic monopoles as gauge particles?” Phys. Lett. B, 72, 117–120 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    N. Seiberg, “Electric–magnetic duality in supersymmetric non-Abelian gauge theories,” Nucl. Phys. B, 435, 129–146 (1995); arXiv:hep-th/9411149v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. Donagi and E. Witten, “Supersymmetric Yang–Mills theory and integrable systems,” Nucl. Phys. B, 460, 299–334 (1996); arXiv:hep-th/9510101v2 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. J. Martinec, “Integrable structures in supersymmetric gauge and string theory,” Phys. Lett. B, 367, 91–96 (1996); arXiv:hep-th/9510204v2 (1995).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg–Witten exact solution,” Phys. Lett. B, 355, 466–474 (1995); arXiv:hep-th/9505035v2 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. D’Hoker and D. H. Phong, “Calogero–Moser systems in SU(N) Seiberg–Witten theory,” Nucl. Phys. B, 513, 405–444 (1998); arXiv:hep-th/9709053v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting,” Adv. Theor. Math. Phys., 7, 831–864 (2003); arXiv:hep-th/0206161v1 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. W. Moore, N. Nekrasov, and S. Shatashvili, “Integrating over Higgs branches,” Commun. Math. Phys., 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    N. Nekrasov and A. Okounkov, “Seiberg–Witten theory and random partitions,” in: The Unity of Mathematics: In Honor of the Ninetieth Birthday of I. M. Gelfand (Progr. Math., Vol. 244, P. Etingof, V. Retakh, and I. M. Singer, eds.), Birkhäuser, Boston (2006), pp. 525–596; arXiv:hep-th/0306238v2 (2003).Google Scholar
  15. 15.
    A. Losev, N. Nekrassov, and S. L. Shatashvili, “Testing Seiberg–Witten solution,” in: Strings, Branes, and Dualities (NATO Sci. Ser. C, Vol. 520, L. Baulieu, P. Di Francesco, M. Douglas, V. Kazakov, M. Picco, and P. Windey, eds.), Kluwer, Springer (1999), pp. 359–372; arXiv:hep-th/9801061v1 (1999).CrossRefGoogle Scholar
  16. 16.
    L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories,” Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    I. Antoniadis, S. Hohenegger, K. S. Narain, and T. R. Taylor, “Deformed topological partition function and Nekrasov backgrounds,” Nucl. Phys. B, 838, 253–265 (2010); arXiv:1003.2832v1 [hep-th] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Krefl and J. Walcher, “Extended holomorphic anomaly in gauge theory,” Lett. Math. Phys., 95, 67–88 (2011); arXiv:1007.0263v1 [hep-th] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A.-K. Kashani-Poor and J. Troost, “The toroidal block and the genus expansion,” JHEP, 1303, 133 (2013); arXiv:1212.0722v2 [hep-th] (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Beccaria, A. Fachechi, G. Macorini, and L. Martina, “Exact partition functions for deformed N=2 theories with Nf=4 flavours,” JHEP, 1612, 029 (2016); arXiv:1609.01189v2 [hep-th] (2016).ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Beccaria and G. Macorini, “Exact partition functions for the Ω-deformed N=2* SU(2) gauge theory,” JHEP, 1607, 066 (2016); arXiv:1606.00179v2 [hep-th] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    E. Witten, “Solutions of four-dimensional field theories via M theory,” Nucl. Phys. B, 500, 3–42 (1997); arXiv:hep-th/9703166v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    D. Gaiotto, “N=2 dualities,” JHEP, 1208, 034 (2012); arXiv:0904.2715v1 [hep-th] (2009).ADSCrossRefGoogle Scholar
  24. 24.
    D. Gaiotto, “Asymptotically free N=2 theories and irregular conformal blocks,” J. Phys.: Conf. Ser., 462, 012014 (2013); arXiv:0908.0307v1 [hep-th] (2009).Google Scholar
  25. 25.
    N. Wyllard, “A (N−1) conformal Toda field theory correlation functions from conformal N=2 SU(N) quiver gauge theories,” JHEP, 0911, 002 (2009); arXiv:0907.2189v2 [hep-th] (2009).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Schiappa and N. Wyllard, “An Ar threesome: Matrix models, 2d CFTs, and 4d N=22 gauge theories,” J. Math. Phys., 51, 082304 (2009).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Mironov and A. Morozov, “On AGT relation in the case of U(3),” Nucl. Phys. B, 825, 1–37 (2010); arXiv:0908.2569v2 [hep-th] (2009).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Kanno, Y. Matsuo, and S. Shiba, “Analysis of correlation functions in Toda theory and AGT–W relation for SU(3) quiver,” Phys. Rev. D, 82, 066009 (2010); arXiv:1007.0601v2 [hep-th] (2010).ADSCrossRefGoogle Scholar
  29. 29.
    M. Taki, “On AGT conjecture for pure super Yang–Mills and W-algebra,” JHEP, 1105, 038 (2011); arXiv: 0912.4789v1 [hep-th] (2009).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J. A. Minahan and K. Zarembo, “The Bethe ansatz for N=4 superYang–Mills,” JHEP, 0303, 013 (2003); arXiv:hep-th/0212208v3 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    N. A. Nekrasov and S. L. Shatashvili, “Quantization of integrable systems and four dimensional gauge theories,” in: Proc. 16th Intl. Congress on Mathematical Physics (ICMP09) (Prague, Czech Republic, 3–8 August 2009, P. Exner, ed.) (2009), pp. 265–289; arXiv:0908.4052v1 [hep-th] (2009).Google Scholar
  32. 32.
    S. Gukov, “Surface operators,” in: New Dualities of Supersymmetric Gauge Theories (J. Teschner, ed.), Springer, Cham (2016), pp. 223–259; arXiv:1412.7127v1 [hep-th] (2014).CrossRefGoogle Scholar
  33. 33.
    S. Gukov and E. Witten, “Gauge theory, ramification, and the geometric Langlands program,” arXiv:hep-th/0612073v2 (2006).Google Scholar
  34. 34.
    D. Gaiotto, S. Gukov, and N. Seiberg, “Surface defects and resolvents,” JHEP, 1309, 070 (2013); arXiv: 1307.2578v2 [hep-th] (2013).ADSCrossRefGoogle Scholar
  35. 35.
    C. Cordova, D. Gaiotto, and S.-H. Shao, “Surface defects and chiral algebras,” JHEP, 1705, 140 (2017); arXiv:1704.01955v1 [hep-th] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, R. R. John, and A. Lerda, “Modular and duality properties of surface operators in N=2 ∗ gauge theories,” JHEP, 1707, 068 (2017); arXiv:1702.02833v3 [hep-th] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, V. Gupta, R. R. John, and A. Lerda, “Surface operators, chiral rings, and localization in N=2 gauge theories,” JHEP, 1711, 137 (2017); arXiv:1707.08922v3 [hep-th] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    F. Fucito, J. F. Morales, and R. Poghossian, “Wilson loops and chiral correlators on squashed spheres,” J. Geom. Phys., 118, 169–180 (2017); arXiv:1603.02586v1 [hep-th] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    M. Beccaria, A. Fachechi, and G. Macorini, “Chiral trace relations in Ω-deformed N=2 theories,” JHEP, 1705, 023 (2017); arXiv:1702.01254v2 [hep-th] (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, “Chiral rings and anomalies in supersymmetric gauge theory,” JHEP, 0212, 071 (2002); arXiv:hep-th/0211170v2 (2002).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    F. Fucito, J. F. Morales, R. Poghossian, and A. Tanzini, “N=1 superpotentials from multi-instanton calculus,” JHEP, 0601, 031 (2006); arXiv:hep-th/0510173v2 (2005).ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Karch, D. Lüst, and A. Miemiec, “New N=1 superconformal field theories and their supergravity description,” Phys. Lett. B, 454, 265–269 (1999); arXiv:hep-th/9901041v3 (1999).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    J. A. Minahan, D. Nemeschansky, and N. P. Warner, “Instanton expansions for mass deformed N=4 super Yang–Mills theories,” Nucl. Phys. B, 528, 109–132 (1998); arXiv:hep-th/9710146v1 (1997).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    V. V. Bazhanov, S. L. Lukyanov, and Al. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory, and thermodynamic Bethe ansatz,” Commun. Math. Phys., 177, 381–398 (1996); arXiv:hep-th/9412229v1 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    R. Flume, F. Fucito, J. F. Morales, and R. Poghossian, “Matone’s relation in the presence of gravitational couplings,” JHEP, 0404, 008 (2004); arXiv:hep-th/0403057v1 (2004).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    R. Poghossian, “Deforming SW curve,” JHEP, 1104, 033 (2011); arXiv:1006.4822v1 [hep-th] (2010).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    F. Fucito, J. F. Morales, D. R. Pacifici, and R. Poghossian, “Gauge theories on Ω-backgrounds from non commutative Seiberg–Witten curves,” JHEP, 1105, 098 (2011); arXiv:1103.4495v4 [hep-th] (2011).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    M. Billo, M. Frau, F. Fucito, L. Giacone, A. Lerda, J. F. Morales, and D. R Pacifici, “Non-perturbative gauge/gravity correspondence in N=2 theories,” JHEP, 1208, 166 (2012); arXiv:1206.3914v1 [hep-th] (2012).ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A.-H. Kashani-Poor and J. Troost, “Quantum geometry from the toroidal block,” JHEP, 1408, 117 (2014); arXiv:1404.7378v1 [hep-th] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    V. V. Bazhanov, S. L. Lukyanov, and Al. B. Zamolodchikov, “Integrable structure of conformal field theory: 2. Q operator and DDV equation,” Commun. Math. Phys., 190, 247–278 (1997); arXiv:hep-th/9604044v2 (1996).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    V. V. Bazhanov, S. L. Lukyanov, and Al. B. Zamolodchikov, “Integrable structure of conformal field theory: 3. The Yang–Baxter relation,” Commun. Math. Phys., 200, 297–324 (1999); arXiv:hep-th/9805008v2 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    R. Sasaki and I. Yamanaka, “Virasoro algebra, vertex operators, quantum sine-Gordon, and solvable quantum field theories,” in: Conformal Field Theory and Solvable Lattice Models (Adv. Stud. Pure Math., Vol. 16, M. Jimbo, T. Miwa, and A. Tsuchiya, eds.), Acad. Press, Boston, Mass. (1988), pp. 271–296.Google Scholar
  53. 53.
    Al. B. Zamolodchikov, “Conformal symmetry in two-dimensional space: Recursion representation of conformal block,” Theor. Math. Phys., 73, 1088–1093 (1987).CrossRefGoogle Scholar
  54. 54.
    R. Poghossian, “Recursion relations in CFT and N=2 SYM theory,” JHEP, 0912, 038 (2009); arXiv: 0909.3412v2 [hep-th] (2009).ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    E. Perlmutter, “Virasoro conformal blocks in closed form,” JHEP, 1508, 088 (2015); arXiv:1502.07742v2 [hep-th] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    M. Matone, “Instantons and recursion relations in N=2 SUSY gauge theory,” Phys. Lett. B, 357, 342–348 (1995); arXiv:hep-th/9506102v1 (1995).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    F. Fucito, J. F. Morales, and R. Poghossian, “Wilson loops and chiral correlators on squashed spheres,” JHEP, 1511, 064 (2015); arXiv:1507.05426v2 [hep-th] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    V. V. Bazhanov, A. N. Hibberd, and S. M. Khoroshkin, “Integrable structure of W3 conformal field theory, quantum Boussinesq theory, and boundary affine Toda theory,” Nucl. Phys. B, 622, 475–547 (2002); arXiv:hepth/ 0105177v3 (2001).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità del SalentoLecceItaly
  2. 2.Instituto Nazionale di Fisica NucleareSezione di LecceLecceItaly

Personalised recommendations