Theoretical and Mathematical Physics

, Volume 196, Issue 1, pp 939–956 | Cite as

Analysis in Differential Algebras and Modules

  • V. V. Zharinov


We present a short introduction to the mathematical methods and techniques of differential algebras and modules adapted to the problems of mathematical and theoretical physics.


algebra differential algebra module differential module multiplicator derivation de Rham complex spectral sequence variation bicomplex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Ritt, Differential Algebra (Amer. Math. Soc. Colloq. Publ., Vol. 33), Amer. Math. Soc., New York (1950).CrossRefzbMATHGoogle Scholar
  2. 2.
    E. R. Kolchin, Differential Algebra and Algebraic Groups, Acad. Press, New York (1973).zbMATHGoogle Scholar
  3. 3.
    I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris (1957).zbMATHGoogle Scholar
  4. 4.
    S. MacLane, Homology (Grundlehren Math. Wiss., Vol. 114), Springer, Berlin (1963).CrossRefzbMATHGoogle Scholar
  5. 5.
    R. Godement, Topologie algèbrique et théorie des faisceaux, Hermann, Paris (1972).zbMATHGoogle Scholar
  6. 6.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts Math., Vol. 107), Springer, New York (1986).CrossRefzbMATHGoogle Scholar
  7. 7.
    V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations (Series Sov. East Eur. Math., Vol. 9), World Scientific, Singapore (1992).CrossRefzbMATHGoogle Scholar
  8. 8.
    A. M. Vinogradov, “A spectral sequence associated with a nonlinear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints,” Sov. Math. Dokl., 19, 144–148 (1978).zbMATHGoogle Scholar
  9. 9.
    T. Tsujishita, “On variation bicomplexes associated to differential equations,” Osaka J. Math., 19, 311–363 (1982).MathSciNetzbMATHGoogle Scholar
  10. 10.
    I. M. Anderson, “The variational bicomplex,”, Utah State Univ., Dept. Math., Logan, Utah (2004).Google Scholar
  11. 11.
    V. V. Zharinov, “On differentiations in differential algebras,” Integral Transform. Spec. Funct., 4, 163–180 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. V. Zharinov, “The formal de Rham complex,” Theor. Math. Phys., 174, 220–235 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    V. V. Zharinov, “Algebraic aspects of gauge theories,” Theor. Math. Phys., 180, 942–957 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    V. V. Zharinov, “Analysis in algebras and modules [in Russian],” Proc. Steklov Inst. Math., 301 (2018 in press).Google Scholar
  15. 15.
    V. V. Zharinov, “Bäcklund transformations,” Theor. Math. Phys., 189, 1681–1692 (2016).CrossRefzbMATHGoogle Scholar
  16. 16.
    V. V. Zharinov, “Algebraic and geometric foundation of mathematical physics [in Russian],” Lekts. Kursy NOC, 9, 3–209 (2008).CrossRefGoogle Scholar
  17. 17.
    V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations,” Theor. Math. Phys., 185, 1557–1581 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. V. Zharinov, “Hamiltonian operators in differential algebras,” Theor. Math. Phys., 193, 1725–1736 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, and I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20, 1750021 (2017); arXiv:1612.00213v1 [quant-ph] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    N. G. Marchuk and D. S. Shirokov, “General solutions of one class of field equations,” Rep. Math. Phys., 78, 305–326 (2016); arXiv:1406.6665v2 [math-ph] (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe,” Phys. Usp., 59, 689–700 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    A. G. Sergeev, “Spin geometry of Dirac and noncommutative geometry of Connes,” Proc. Steklov Inst. Math., 298, 256–293 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett., 113, 30005 (2016); arXIv:1509.05754 (2015).CrossRefGoogle Scholar
  24. 24.
    A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Sb. Math., 206, 1410–1439 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions,” Russ. Math. Surveys, 71, 1081–1134 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations