Advertisement

Theoretical and Mathematical Physics

, Volume 195, Issue 3, pp 861–873 | Cite as

Four-Parameter 1/r2 Singular Short-Range Potential with Rich Bound States and A Resonance Spectrum

Article
  • 6 Downloads

Abstract

We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a 1/r2 singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.

Keywords

1/r2 singular potential tridiagonal representation recurrence relation parameter spectrum bound state resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Natanzon, “General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions,” Theor. Math. Phys., 38, 146–153 (1979).CrossRefMATHGoogle Scholar
  2. 2.
    R. De, R. Dutt, and U. Sukhatme, “Mapping of shape invariant potentials under point canonical transformations,” J. Phys. A: Math. Gen., 25, L843–L850 (1992).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the confluent Heun function,” Theor. Math. Phys., 188, 980–993 (2016).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. D. Alhaidari, “An extended class of L2-series solutions of the wave equation,” Ann. Phys., 317, 152–174 (2005).ADSCrossRefMATHGoogle Scholar
  5. 5.
    A. D. Alhaidari, “Analytic solution of the wave equation for an electron in the field of a molecule with an electric dipole moment,” Ann. Phys., 323, 1709–1728 (2008).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. D. Alhaidari and H. Bahlouli, “Extending the class of solvable potentials: I. The infinite potential well with a sinusoidal bottom,” J. Math. Phys., 49, 082102 (2008).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. D. Alhaidari, “Extending the class of solvable potentials: II. Screened Coulomb potential with a barrier,” Phys. Scr., 81, 025013 (2010); arXiv:1004.3905v1 [math-ph] (2010).ADSCrossRefMATHGoogle Scholar
  8. 8.
    H. Bahlouli and A. D. Alhaidari, “Extending the class of solvable potentials: III. The hyperbolic single wave,” Phys. Scr., 81, 025008 (2010).ADSCrossRefMATHGoogle Scholar
  9. 9.
    A. D. Alhaidari, “Solution of the nonrelativistic wave equation using the tridiagonal representation approach,” J. Math. Phys., 58, 072104 (2017).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its qanalogues,” Reports of the Faculty of Technical Mathematics and Informatics, No. 98–17, Delft Univ. of Technology, Delft, 38–44 (1998); arXiv:math/9602214v1 (1996).Google Scholar
  11. 11.
    A. D. Alhaidari and M. E. H. Ismail, “Quantum mechanics without potential function,” J. Math. Phys., 56, 072107 (2015).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    K. M. Case, “Orthogonal polynomials from the viewpoint of scattering theory,” J. Math. Phys., 15, 2166–2174 (1974).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J. S. Geronimo and K. M. Case, “Scattering theory and polynomials orthogonal on the real line,” Trans. Amer. Math. Soc., 258, 467–494 (1980).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A. D. Alhaidari, “Representation reduction and solution space contraction in quasi-exactly solvable systems,” J. Phys. A: Math. Theor., 40, 6305–6328 (2007).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R. W. Haymaker and L. Schlessinger, “Padé approximants as a computational tool for solving the Schrodinger and Bethe–Salpeter equations,” in: The Padé Approximation in Theoretical Physics (Math. in Sci. and Engineering, Vol. 71, G. A. Baker and J. L. Gammel, eds.), Acad. Press, New York (1970), pp. 257–287.CrossRefGoogle Scholar
  16. 16.
    J. Aquilar and J. M. Combes, “A class of analytic perturbations for one-body Schrödinger Hamiltonians,” Commun. Math. Phys., 22, 269–279 (1971).ADSCrossRefMATHGoogle Scholar
  17. 17.
    E. Balslev and J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions,” Commun. Math. Phys., 22, 280–294 (1971).ADSCrossRefMATHGoogle Scholar
  18. 18.
    B. Simon, “Quadratic form techniques and the Balslev–Combes theorem,” Commun. Math. Phys., 27, 1–9 (1972).ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    B. Simon, “Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory,” Ann. Math., 97, 247–274 (1973).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    C. Cerjan, R. Hedges, C. Holt, W. P. Reinhardt, K. Scheibner, and J. J. Wendoloski, “Complex coordinates and the Stark effect,” Internat. J. Quantum Chem., 14, 393–418 (1978).CrossRefGoogle Scholar
  21. 21.
    W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular structure and dynamics,” Ann. Rev. Phys. Chem., 33, 223–255 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    B. R. Junker, “Recent computational developments in the use of complex scaling in resonance phenomena,” Adv. Atom. Mol. Phys., 18, 207–263 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    A. Maquet, S.-I. Chu, and W. P. Reinhardt, “Stark ionization in dc and ac fields: An L2 complex-coordinate approach,” Phys. Rev. A, 27, 2946–2970 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    Y. K. Ho, “The method of complex coordinate rotation and its applications to atomic collision processes,” Phys. Rep., 99, 1–68 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    M. Bylicki, “Methods involving complex coordinates applied to atoms,” Adv. Quantum Chem., 32, 207–226 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    N. Moiseyev, “Quantum theory of resonances: calculating energies, widths, and cross-sections by complex scaling,” Phys. Rep., 302, 212–293 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Saudi Center for Theoretical PhysicsJeddahSaudi Arabia

Personalised recommendations