Advertisement

Theoretical and Mathematical Physics

, Volume 195, Issue 2, pp 704–717 | Cite as

Quasiaverages and Degenerate Quantum Equilibriums of Magnetic Systems with SU(3) Symmetry of the Exchange Interaction

  • N. N. BogolyubovJr.
  • A. V. Glushchenko
  • M. Yu. Kovalevskii
Article
  • 19 Downloads

Abstract

We consider magnetic systems with the SU(3) symmetry of the exchange interaction. For degenerate equilibriums with broken magnetic and phase symmetries, we formulate classification equations for the order parameter using the concept of residual symmetry. Based on them, we obtain an explicit form of the equilibrium values of the order parameters of a spin nematic and an antiferromagnet in the general form. We clarify the existence conditions for six types of superfluid equilibriums for the order parameter describing the Bose pair condensate. We study inhomogeneous equilibriums and obtain the explicit coordinate dependence of the magnetic order parameters.

Keywords

equilibrium order parameter spin unitary symmetry classification equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Lacroix, P. Mendels, and F. Mila, eds., Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer Ser. Solid-State Sci., Vol. 164), Springer, Berlin (2011).CrossRefGoogle Scholar
  2. 2.
    A. Lauchli, F. Mila, and K. Penc, “Quadrupolar phases of the S=1 bilinear–biquadratic Heisenberg model on the triangular lattice,” Phys. Rev. Lett., 97, 087205 (2006); Erratum, 97, 229901 (2006).CrossRefADSGoogle Scholar
  3. 3.
    P. Li, G.-M. Zhang, and S.-Q. Shen, “SU(3) bosons and the spin nematic state on the spin-1 bilinear–biquadratic triangular lattice,” Phys. Rev. B, 75, 104420 (2007).CrossRefADSGoogle Scholar
  4. 4.
    P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, “Multipolar interactions in f-electron systems: The paradigm of actinide dioxides,” Rev. Modern Phys., 81, 807–863 (2009).CrossRefADSGoogle Scholar
  5. 5.
    M. E. Zhitomirsky and H. Tsunetsugu, “Magnon pairing in quantum spin nematic,” Europhys. Lett., 92, 37001 (2010).CrossRefGoogle Scholar
  6. 6.
    V. G. Bar’yakhtar, V. I. Butrim, A. K. Kolezhuk, and B. A. Ivanov, “Dynamics and relaxation in spin nematics,” Phys. Rev. B, 87, 224407 (2013).CrossRefADSGoogle Scholar
  7. 7.
    T. Zibold, V. Corre, C. Frapolli, A. Invernizzi, J. Dalibard, and F. Gerbier, “Spin-nematic order in antiferromagnetic spinor condensates,” Phys. Rev. A, 93, 023614 (2016).CrossRefADSGoogle Scholar
  8. 8.
    T.-L. Ho, “Spinor bose condensates in optical traps,” Phys. Rev. Lett., 81, 742–745 (1998).CrossRefADSGoogle Scholar
  9. 9.
    T. Ohmi and T. Machida, “Bose–Einstein condensation with internal degrees of freedom in alkali atom gases,” J. Phys. Soc. Japan, 67, 1822–1825 (1998).CrossRefADSGoogle Scholar
  10. 10.
    R. Barnett, A. Turner, and E. Demler, “Classifying novel phases of spinor atoms,” Phys. Rev. Lett., 97, 180412 (2006); arXiv:cond-mat/0607253v4 (2006).CrossRefADSGoogle Scholar
  11. 11.
    L. Michel, “Symmetry defects and broken symmetry: Configurations hidden symmetry,” Rev. Modern Phys., 52, 617–651 (1980).MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    V. P. Mineev, “Topologically stable inhomogeneous states in ordered media [in Russian],” Preprint, Landau Inst. Theor. Phys., Chernogolovka (1980).Google Scholar
  13. 13.
    H. Mäkela and K. A. Suominen, “Inert states of spin-S systems,” Phys. Rev. Lett., 99, 190408 (2007).CrossRefGoogle Scholar
  14. 14.
    S.-K. Yip, “Symmetry and inert states of spin Bose–Einstein condensates,” Phys. Rev. A, 75, 023625 (2007).CrossRefADSGoogle Scholar
  15. 15.
    Y. Kawaguchi and M. Ueda, “Spinor Bose–Einstein condensates,” Phys. Rep., 520, 253–381 (2012).MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    F. Zhou and M. Snoek, “Spin singlet Mott states and evidence for spin singlet quantum condensates of spin-one bosons in lattices,” Ann. Phys., 308, 692–738 (2003).MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. 17.
    Y.-Q. Li, S.-J. Gu, and Z.-J. Ying, “One-dimensional SU(3) bosons with δ-function interaction,” J. Phys. A: Math. Gen., 36, 2821–2838 (2003).MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. 18.
    C. M. Puetter, M. J. Lawler, and H.-Y. Kee, “Theory of the spin-nematic to spin-Peierls quantum phase transition in ultracold spin-1 atoms in optical lattices,” Phys. Rev. B, 78, 165121 (2008).CrossRefADSGoogle Scholar
  19. 19.
    N. N. Bogoliubov, “Quasiaverages in problems in statistical mechanics [in Russian],” Preprint D-781, Joint Inst. Nucl. Res., Dubna (1961).Google Scholar
  20. 20.
    N. N. Bogoliubov and N. N. Bogoliubov Jr., Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984); English transl. (2nd ed.), World Scientific, Singapore (2009).CrossRefzbMATHGoogle Scholar
  21. 21.
    N. N. Bogolyubov Jr., M. Yu. Kovalevskii, A. M. Kurbatov, S. V. Peletminskii, and A. N. Tarasov, “On the microscopic theory of superfluid liquids,” Sov. Phys. Usp., 32, 1041–1059 (1989).MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    M. Yu. Kovalevsky and S. V. Peletminsky, “Statistical mechanics of quantum fluids with triplet pairing [in Russian],” Fiz. Elem. Chast. i Atom. Yadra, 33, 1357–1442 (2002).Google Scholar
  23. 23.
    N. N. Bogolyubov Jr., D. A. Demyanenko, M. Y. Kovalevsky, and N. N. Chekanova, “Quasiaverages and classification of equilibrium states of condensed media with spontaneously broken symmetry,” Phys. Atom. Nucl., 72, 761–767 (2009).CrossRefADSGoogle Scholar
  24. 24.
    M. Yu. Kovalevsky, “Classifying magnetic and superfluid equilibrium states in magnets with the spin s = 1,” Theor. Math. Phys., 186, 395–410 (2016).MathSciNetCrossRefGoogle Scholar
  25. 25.
    N. Papanicolaou, “Unusual phases in quantum spin-1 systems,” Nucl. Phys. B, 305, 367–395 (1988).MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    M. Yu. Kovalevskii and S. V. Peletminskii, Statistical Mechanics of Quantum Liquids and Crystals [in Russian], Fizmatlit, Moscow (2006).Google Scholar
  27. 27.
    N. N. Bogoliubov, “Toward a theory of superfluidity [in Russian],” Izv. AN SSSR. Ser. Phys., 11, 77–90 (1947).Google Scholar
  28. 28.
    E. P. Gross, “Quantum theory of interacting bosons,” Ann. Phys., 9, 292–324 (1960).MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. 29.
    A. S. Peletminskii, S. V. Peletminskii, and Yu. M. Poluektov, “Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction,” Condens. Matter Phys., 16, 13603 (2013); arXiv:1303.5539v1 [cond-mat.stat-mech] (2013).CrossRefGoogle Scholar
  30. 30.
    I. V. Bogoyavlenskii, L. V. Karhatsevich, Zh. A. Kozlov, and A. V. Puchkov, “Bose condensation in liquid helium-4,” Sov. J. Low Temp. Phys., 16, 77 (1990).Google Scholar
  31. 31.
    H. R. Glyde, S. O. Diallo, R. T. Azuah, O. Kirichek, and J. W. Taylor, “Bose–Einstein condensation in liquid 4He under pressure,” Phys. Rev. B, 83, 100507 (2011).CrossRefADSGoogle Scholar
  32. 32.
    I. A. Vakarchuk, “Density matrices of superfluid helium-4: II,” Theor. Math. Phys., 82, 308–316 (1990).CrossRefGoogle Scholar
  33. 33.
    A. I. Akhiezer, S. V. Peletminskii, and Yu. V. Slyusarenko, “Theory of a weakly nonideal Bose gas in a magnetic field,” JETP, 86, 501–506.Google Scholar
  34. 34.
    N. D. Mermin, “d-Wave pairing near the transition temperature,” Phys. Rev. A, 9, 868–872 (1974).CrossRefADSGoogle Scholar
  35. 35.
    E. I. Kats, “Spontaneous chiral symmetry breaking in liquid crystals,” Low Temperature Physics, 43, 5–7 (2017).CrossRefADSGoogle Scholar
  36. 36.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, Taylor and Francis, London (1990).Google Scholar
  37. 37.
    I. E. Dzyaloshinskii, “Theory of helicoidal structures in antiferromagnets: I. Nonmetals,” JETP, 19, 960 (1964).Google Scholar
  38. 38.
    M. Yu. Kovalevsky, “Quasi-averages in the solution of the classification problem for equilibriums of condensed media with a spontaneously broken symmetry,” Theor. Math. Phys., 160, 1113–1123 (2009).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. BogolyubovJr.
    • 1
  • A. V. Glushchenko
    • 2
  • M. Yu. Kovalevskii
    • 2
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.National Science Center “Kharkov Institute for Physics and Technology,”KharkovUkraine

Personalised recommendations