Theoretical and Mathematical Physics

, Volume 195, Issue 1, pp 513–528 | Cite as

Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains



We consider differential–difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.


integrability discrete equation differential–difference equation lattice symmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Papageorgiou and F. W. Nijhoff, “On some integrable discrete-time systems associated with the Bogoyavlensky lattices,” Phys. A: Stat. Mech. Appl., 228, 172–188 (1996).MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Levi, M. Petrera, C. Scimiterna, and R. Yamilov, “On Miura transformations and Volterra-type equations associated with the Adler–Bobenko–Suris equations,” SIGMA, 4, 077 (2008).MathSciNetMATHGoogle Scholar
  3. 3.
    V. E. Adler and V. V. Postnikov, “On discrete 2D integrable equations of higher order,” J. Phys. A: Math. Theor., 47, 045206 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    R. N. Garifullin, A. V. Mikhailov, and R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries,” Theor. Math. Phys., 180, 765–780 (2014).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Yu. B. Suris, “Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice,” Phys. Lett. A, 206, 153–161 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yu. B. Suris, “A discrete-time relativistic Toda lattice,” J. Phys. A: Math. Gen., 29, 451–465 (1996).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Yu. B. Suris, “New integrable systems related to the relativistic Toda lattice,” J. Phys. A: Math. Gen., 30, 1745–1761 (1997).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. E. Adler, “Legendre transforms on a triangular lattice,” Funct. Anal. Appl., 34, 1–9 (2000).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    V. E. Adler, “On the structure of the Bäcklund transformations for the relativistic lattices,” J. Nonlinear Math. Phys., 7, 34–56 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    V. E. Adler and Yu. B. Suris, “Q4: Integrable master equation related to an elliptic curve,” Int. Math. Res. Not., 2004, 2523–2553 (2004).CrossRefMATHGoogle Scholar
  11. 11.
    R. Boll and Yu. B. Suris, “Non-symmetric discrete Toda systems from quad-graphs,” Appl. Anal., 89, 547–569 (2010).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    V. E. Adler and A. B. Shabat, “On the one class of hyperbolic systems,” SIGMA, 2, 093 (2006) arXiv: nlin.SI/0612060v1 (2006).MathSciNetMATHGoogle Scholar
  13. 13.
    R. I. Yamilov, “On the classification of discrete evolution equations [in Russian],” Uspekhi Mat. Nauk, 38, No. 6(234), 155–156 (1983).Google Scholar
  14. 14.
    R. I. Yamilov, “Symmetries as integrability criteria for differential difference equations,” J. Phys. A: Math. Gen., 39, R541–R623 (2006).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    V. E. Adler, “Necessary integrability conditions for evolutionary lattice,” Theor. Math. Phys., 181, 1367–1382 (2014).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    V. E. Adler, “Higher-dimensional Contou-Carr`ere symbol and continuous automorphisms,” Funct. Anal. Appl., 50, 268–280 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. N. Garifullin, R. I. Yamilov, and D. Levi, “Classification of five-point differential–difference equations,” J. Phys. A: Math. Theor., 50, 125201 (2017).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. N. Garifullin and R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters,” J. Phys. A: Math. Theor., 45, 345205 (2012).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations,” J. Math. Phys., 16, 598–603 (1975).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    T. Tsuchida, “Integrable discretizations of derivative nonlinear Schr¨odinger equations,” J. Phys. A: Math. Gen., 35, 7827–7847 (2002).ADSCrossRefMATHGoogle Scholar
  21. 21.
    V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Discrete nonlinear hyperbolic equations: Classification of integrable cases,” Funct. Anal. Appl., 43, 3–17 (2009).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRAS, Chernogolovka, Moscow OblastRussia

Personalised recommendations