Advertisement

Theoretical and Mathematical Physics

, Volume 194, Issue 2, pp 189–219 | Cite as

Phase Space of Collective Variables and the Zubarev Transition Function

  • I. R. YukhnovskiiEmail author
Article
  • 11 Downloads

Abstract

We study the completeness of the transition function J(ρ − \(\hat \rho \)) to the infinite set of collective variables {ρk}. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.

Keywords

collective variables Jacobian theory of electrolytes quartic measure density Ising model first-order phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Zubarev, “Computation of configuration integrals for a system of particles with Coulomb interaction [in Russian],” Dokl. AN SSSR, 95, 757–760 (1954).Google Scholar
  2. 2.
    D. Bohm and D. Pines, “A collective description of electron interactions: I. Magnetic interactions,” Phys. Rev., 82, 625–634 (1951); “A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions,” Phys. Rev., 85, 338–353 (1952); “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas,” Phys. Rev., 92, 609–625 (1953).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. J. Yevic and J. K. Perkus, “New approach to the many-body problem,” Phys. Rev., 101, 1186–1191 (1956); “Dynamical considerations on a new approach to the many-body problem,” Phys. Rev., 101, 1192–1197 (1956).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett., 3, 77–78 (1959); “The description of collective motions in terms of many-body perturbation theory,” Proc. Roy. Soc. A, 240, 539–560 (1957).ADSCrossRefGoogle Scholar
  5. 5.
    R. L. Stratonovic, “On a method of calculating quantum distribution functions,” Sov. Phys. Dokl., 2, 416–419 (1958).ADSGoogle Scholar
  6. 6.
    I. R. Yukhnovskii, “Use of collective variables and treatment of short-range forces in the theory of a system of charged particles,” Sov. JETP, 7, 263–270.Google Scholar
  7. 7.
    I. R. Yukhnovskii, “The quantum partition function and collective variables: II. Transition function to collective variables [in Ukrainian],” Ukr. Fiz. Zhurn., 9, 827–838 (1964).Google Scholar
  8. 8.
    I. R. Yukhnovskii and M. K. Ostrovskii, “The properties of the transition functions to the collective variables [in Ukrainian],” Vestn. L’vov. Un-ta. Ser. Fiz., 5, No. 13, 3–11 (1969).Google Scholar
  9. 9.
    I. R. Yukhnovskii, “On the statistical theory of ionic systems [in Russian],” Ukr. Fiz. Zhurn., 4, 167–176 (1959).Google Scholar
  10. 10.
    I. R. Yukhnovskii, “On the statistical theory of mixed ion-dipole systems of interacting particles [in Russian],” Dokl. AN SSSR, 136, 1317–1320 (1961).Google Scholar
  11. 11.
    I. R. Yukhnovskii, “To statistical theories of systems of interacting ions and dipole particles [in Ukrainian],” Ukr. Fiz. Zhurn., 6, 333–339 (1961).Google Scholar
  12. 12.
    A. A. Nekrot, “Method of angular collective variables for calculating the partition function of a variable ion–dipole system: I. The classical case [in Ukrainian],” Ukr. Fiz. Zhurn., 8, 560–567 (1963).Google Scholar
  13. 13.
    I. R. Yukhnovskii and A. A. Nekrot, “Virial expansion for plasma in the method of collective variables [in Russian],” Ukr. Fiz. Zhurn., 11, 363–371 (1966).Google Scholar
  14. 14.
    I. R. Yukhnovskii and M. F. Golovko, “Statistical theory of equilibrium systems of particles of complex electrostatic structure [in Russian],” Ukr. Fiz. Zhurn., 14, 1116–1129 (1969).Google Scholar
  15. 15.
    I. R. Yukhnovskii, V. S. Vysochanskii, and M. F. Golovko, “Investigation of group expansions for binary distribution functions of systems of particles with an electrostatic interaction: I. Third virial coefficient [in Russian],” Preprint ITF-72-IP, Inst. Theor. Phys., Kiev (1972); “Binary distribution functions of ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 18, 66–74 (1973); “Toward the study of binary distribution functions of ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 18, 1842–1847 (1973).Google Scholar
  16. 16.
    V. S. Vysochanskii, “‘Dipole–dipole’ distribution functions in mixed ion–dipole systems [in Russian],” Ukr. Fiz. Zhurn., 22, 209–212 (1977).Google Scholar
  17. 17.
    I. R. Yukhnovskii, V. D. Gruba, M. F. Golovko, and Yu. M. Kessler, “A study of the dependence of mediumstrength interionic interaction potentials on the parameters and form of the ion–molecular and intermolecular interaction potentials [in Russian],” Ukr. Fiz. Zhurn., 25, 1761–1765 (1980).Google Scholar
  18. 18.
    I. R. Yukhnovskii, M. F. Golovko, and A. V. Popov, “Exact account for dipole orientations in calculating binary distribution functions of a mixed ion–dipole system [in Russian],” Ukr. Fiz. Zhurn., 25, 762–770 (1980).Google Scholar
  19. 19.
    I. I. Kurylyak and I. R. Yukhnovskii, “The method of collective variables in the equilibrium statistical theory of bounded systems of charged particles: I. Continuum model of an electrolyte solution occupying a half-space,” Theor. Math. Phys., 52, 691–699 (1982).CrossRefGoogle Scholar
  20. 20.
    M. F. Golovko, I. I. Kurylyak, O. A. Pizio, and E. N. Sov’yak, “On the basis account for interactions in the statistical theory of ion–molecular systems [in Russian],” in: Problems of Modern Statistical Physics (N. N. Bogoliubov, ed.), Naukova Dumka, Kiev (1985), pp. 82–96.Google Scholar
  21. 21.
    I. R. Yukhnovskii, “Separation of the reference system in a collective variable method [in Russian],” Preprint ITP-74-149P, Inst. Theor. Phys., Kiev (1974).Google Scholar
  22. 22.
    M. F. Golovko and O. A. Pizio, “Basis account for short-range interactions in the theory of ionic systems [in Russian],” Ukr. Fiz. Zhurn., 21, 653–662 (1976).Google Scholar
  23. 23.
    I. R. Yukhnovskii and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  24. 24.
    L. Blum and D. Q. Wei, “Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent,” J. Chem. Phys., 87, 555–565 (1987)ADSCrossRefGoogle Scholar
  25. 24a.
    D. Q. Wei and L. Blum, “The mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics,”, 87, 2999–3007 (1987).Google Scholar
  26. 25.
    M. F. Golovko and I. A. Protsykevich, “Pair correlation functions for the asymmetric ion–dipole model in the mean spherical approximation,” Chem. Phys. Lett., 142, 463–468 (1987).ADSCrossRefGoogle Scholar
  27. 26.
    M. F. Golovko and I. A. Protsykevich, “Analytic solution of the mean spherical approximation for ion–dipole model in a neutralizing background,” J. Statist. Phys., 54, 707–733 (1989).ADSMathSciNetCrossRefGoogle Scholar
  28. 27.
    M. Wertheim, “Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments,” J. Chem. Phys., 55, 4291–4298 (1971).ADSCrossRefGoogle Scholar
  29. 28.
    M. F. Holovko and V. Kapko, “Ion association phenomena and static dielectric properties in electrolyte solutions: Application of the effective mean spherical approximation–mass action law approach,” Acta Chim. Slov., 56, 203–208 (2009).Google Scholar
  30. 29.
    I. R. Yukhnovskii and Yu. K. Rudavskii, “Substantiation of the form of the basis distribution near the phase transition point in the Ising model [in Russian],” Dokl. AN SSSR, 236, 579–582 (1977).Google Scholar
  31. 30.
    I. R. Yukhnovskii, “Integration of the partition function of the three-dimensional Ising model in the collective variable method [in Russian],” Preprint ITP-76-24P, Inst. Theor. Phys., Kiev (1976); Ukr. Fiz. Zhurn., 22, 323–335, 382–392 (1977); “Partition function of the three-dimensional Ising model [in Russian],” Dokl. AN SSSR, 232, 312-315 (1977); “Partition function of the three-dimensional Ising model,” Theor. Math. Phys., 36, 798–815 (1978).Google Scholar
  32. 31.
    I. R. Yukhnovskii, Phase Transition of the Second Order: Collective Variables Method [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  33. 32.
    I. R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: Calculational method and dependence on microscopic parameters,” Phys. Rev. B, 66, 134410 (2002).ADSCrossRefGoogle Scholar
  34. 33.
    M. P. Kozlovskii, I. V. Pylyuk, and O. O. Prytula, “Microscopic description of the critical behavior of threedimensional Ising-like systems in an external field,” Phys. Rev. B., 73, 174406 (2006).ADSCrossRefGoogle Scholar
  35. 34.
    I. R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, Microscopic Theory of Phase Transitions in Three-Dimensional Systems, Evrosvit, L’vov (2001).zbMATHGoogle Scholar
  36. 35.
    L. P. Kadanoff, “Scaling laws for Ising models near Tc,” Physics, 2, 263–272 (1966).CrossRefGoogle Scholar
  37. 36.
    K. G. Wilson, “Renormalization group and critical phenomena: I. Renormalization group and the Kadanoff scaling picture,” Phys. Rev. B., 4, 3174–3183 (1971); “Renormalization group and critical phenomena: II. Phasespace cell analysis of critical behavior,” Phys. Rev. B., 4, 3184–3205 (1971).ADSCrossRefzbMATHGoogle Scholar
  38. 37.
    K. G. Wilson and J. Kogut, The Renormalization Group and the Epsilon Expansion, North-Holland, Amsterdam (1974).Google Scholar
  39. 38.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1975).Google Scholar
  40. 39.
    R. Braut, Phase Transitions, Benjamin, New York (1963).Google Scholar
  41. 40.
    I. M. Idzik, V. A. Kolomiets, and I. R. Yukhnovskii, “Liquid–gas critical point in the method of collective variables,” Theor. Math. Phys., 73, 1204–1217 (1987).CrossRefGoogle Scholar
  42. 41.
    L. D. Landau, Collected Papers [in Russian], Nauka, Moscow (1969); English transl., Pergamon, Oxford (1979).Google Scholar
  43. 42.
    I. R. Yukhnovskii, “Method of collective variables with references system for the grand canonical ensemble,” Theor. Math. Phys., 79, 536–546 (1989).MathSciNetCrossRefGoogle Scholar
  44. 43.
    I. R. Yukhnovskii, “The grand partition function in the method of collective variables and its application to the investigation of the liquid–gas phase transition,” Proc. Steklov Inst. Math., 191, 223–243 (1992).Google Scholar
  45. 44.
    I. R. Yukhnovskii, I. M. Idzyk, and V. O. Kolomiets, “Investigation of a homogeneous many-particle system in the vicinity of the critical point,” J. Stat. Phys., 80, 405–443 (1995).ADSCrossRefzbMATHGoogle Scholar
  46. 45.
    I. R. Yukhnovskii, “The phase transition of the first order in the critical region of the gas–liquid system,” Condens. Matter Phys., 17, 43001 (2014); arXiv:1501.02325v1 [cond-mat.stat-mech] (2015).CrossRefGoogle Scholar
  47. 46.
    V. I. Kalikmanov, J. Wolk, and T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment,” J. Chem. Phys., 128, 124506 (2008).ADSCrossRefGoogle Scholar
  48. 47.
    A. Fladerer and R. Strey, “Homogeneous nucleation and droplet growth in supersaturated argon vapor: The cryogenic nucleation pulse chamber,” J. Chem. Phys., 124, 164710 (2006).ADSCrossRefGoogle Scholar
  49. 48.
    J. D. van der Waals, “On the continuity of the gaseous and liquid states [in Dutch],” Doctoral dissertation, Univ. of Leiden, Leiden (1873); English transl.: On the Continuity of the Gaseous and Liquid States (Stud. Stat. Mech., Vol. 14, J. S. Rowlinson, ed.), North Holland, Amsterdam (1988).Google Scholar
  50. 49.
    R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).Google Scholar
  51. 50.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, [in Russian], Vol. 5, Statistical Physics: Part 1, Nauka, Moscow (1976); English transl., Pergamon, Oxford (1980).Google Scholar
  52. 51.
    G. A. Martynov, “The problem of phase transitions in statistical mechanics,” Phys. Usp., 42, 517–543 (1999).ADSCrossRefGoogle Scholar
  53. 52.
    Yu. L. Klimontovich, “Vapor–liquid phase transition: The Van der Waals model,” Theor. Math. Phys., 115, 707–722 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 53.
    A. S. Bakai, “Heterophase liquid states: Thermodynamics, structure, dynamics,” Condens. Matter Phys., 17, 43701 (2014).CrossRefGoogle Scholar
  55. 54.
    I. R. Yukhnovskii, “Phase transitions in the vicinity of the gas–liquid critical point,” Ukr. J. Phys. Reviews, 10, 33–97 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Condensed Matter PhysicsNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations