Advertisement

Theoretical and Mathematical Physics

, Volume 194, Issue 1, pp 57–73 | Cite as

Zubarev’s Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems

  • P. A. Glushak
  • B. B. Markiv
  • M. V. TokarchukEmail author
Article

Abstract

We present a generalization of Zubarev’s nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev’s nonequilibrium statistical operator method in the framework of Renyi statistics.

Keywords

Renyi entropy nonequilibrium statistical operator generalized transport equation diffusion equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Zubarev, “Computation of configuration integrals for a system of particles with Coulomb interaction,” Doklady Akad. Nauk SSSR, n.s., 95, 757–760 (1954).MathSciNetzbMATHGoogle Scholar
  2. 2.
    D. N. Zubarev, “Double-time Green functions in statistical physics,” Sov. Phys. Usp., 3, 320–345 (1960).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D. N. Zubarev, “The statistical operator for nonequilibrium systems,” Soviet Phys. Dokl., 6, 776–778 (1962).ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York (1974).Google Scholar
  5. 5.
    D. N. Zubarev, “Modern methods of the statistical theory of nonequilibrium processes,” J. Soviet Math., 16, 1509–1571 (1981).zbMATHCrossRefGoogle Scholar
  6. 6.
    D. N. Zubarev, “Nonequilibrium statistical operator as a generalization of Gibbs distribution for nonequilibrium case,” Condens. Matter Phys., 7–25 (1994).Google Scholar
  7. 7.
    V. G. Morozov and G. Röpke, “Zubarev’s method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes,” Condens. Matter Phys., 1, 673–686 (1998).CrossRefGoogle Scholar
  8. 8.
    D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie, Berlin (1996)zbMATHGoogle Scholar
  9. 9.
    D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Relaxation and Hydrodynamic Processes, Akademie, Berlin (1997).zbMATHGoogle Scholar
  10. 10.
    I. R. Yukhnovskii and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  11. 11.
    I. R. Yukhnovskii, “Method of collective variables with references system for the grand canonical ensemble,” Theor. Math. Phys., 79, 536–546 (1989).MathSciNetCrossRefGoogle Scholar
  12. 12.
    I. R. Yukhnovskii and O. V. Patsahan, “Grand canonical distribution for multicomponent system in the collective variables method,” J. Statist. Phys., 81, 647–672 (1995).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    I. R. Yukhnovskii, Selected Works: Physics [in Ukrainian], Lviv Polytechnic Natl. Univ. Press, Lviv (2005).Google Scholar
  14. 14.
    I. R. Yukhnovskii, Phase Transitions of the Second Order: Collective Variables Method, World Scientific, Singapore (1987).zbMATHCrossRefGoogle Scholar
  15. 15.
    I. R. Yukhnovskii, “The functional of the grand partition function for the investigation of the liquid–gas critical point,” Phys. A, 168, 999–1020 (1990).CrossRefGoogle Scholar
  16. 16.
    I. R. Yukhnovskii, M. P. Kozlovskii, and I. V. Pylyuk, Microscopic Theory of Phase Transitions in Three-Dimensional Systems [in Ukrainian], Eurosvit, Lviv (2001).zbMATHGoogle Scholar
  17. 17.
    I. A. Vakarchuk and I. R. Yukhnovskii, “Self-consistent description of long-range and short-range correlations in the theory of liquid He4: I,” Theor. Math. Phys., 40, 626–633 (1979).CrossRefGoogle Scholar
  18. 18.
    I. A. Vakarchuk, O. L. Gonopol’skii, and I. R. Yukhnovskii, “Self-consistent description of long-range and short-range correlations in the theory of liquid He4: II,” Theor. Math. Phys., 41, 896–903 (1979).Google Scholar
  19. 19.
    P. P. Kostrobii and I. R. Yukhnovskii, “Distribution function of a degenerate electron gas in a periodic external field,” Theor. Math. Phys., 32, 694–704 (1977).CrossRefGoogle Scholar
  20. 20.
    V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics [in Russian], Fizmatlit, Moscow (1961); English transl., North-Holland, Amsterdam (1962).zbMATHGoogle Scholar
  21. 21.
    N. M. Plakida, “The method of two-time Green’s functions in the theory of anharmonic crystals,” in: Statistical Physics and Quantum Field Theory (N. N. Bogoliubov, ed.) [in Russian], Nauka, Moscow (1973), pp. 205–240.Google Scholar
  22. 22.
    N. M. Plakida, Some Questions in Solid State Quantum Theory (Method of Two-Time Green’s Functions) [in Russian], Moscow Univ. Press, Moscow (1974).Google Scholar
  23. 23.
    D. N. Zubarev and Yu. A. Tserkovnikov, “The method of Green’s two-time temperature functions in equilibrium and nonequilibrium statistical mechanics,” Proc. Steklov Inst. Math., 175, 139–185 (1988).zbMATHGoogle Scholar
  24. 24.
    N. M. Plakida, “Two-time Green’s functions in superconductivity theory,” Theor. Math. Phys., 154, 108–122 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    N. M. Plakida, “The two-time Green’s function and the diagram technique,” Theor. Math. Phys., 168, 1303–1317 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    W. D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems, Plenum, London (1986).CrossRefGoogle Scholar
  27. 27.
    G. D. Mahan, Many-Particle Physics, Kluwer, New York (2000).CrossRefGoogle Scholar
  28. 28.
    V. T. Shvets’, Method of Green’s Functions in the Theory of Metals [in Ukrainian], Latstar, Odessa (2002).Google Scholar
  29. 29.
    R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism (Fund. Theor. Phys., Vol. 122), Kluwer, Dordrecht (2002).Google Scholar
  30. 30.
    Yu. A. Tserkovnikov, Statistical Mechanics: Selected Works [in Russian], Yanus-K, Moscow (2010).Google Scholar
  31. 31.
    I. V. Stasyuk, Green’s Functions in Solid State Quantum Statistics: A Textbook [in Ukrainian], Ivan Franko National University of Lviv, Lviv (2013).Google Scholar
  32. 32.
    R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Statistical Foundations of Irreversible Thermodynamics, Springer Science and Business Media, Berlin (2013).zbMATHGoogle Scholar
  33. 33.
    I. I. Lyapilin and V. P. Kalashnikov, Nonequilibrium Statistical Operator and Its Applications to the Kinetics of Paramagnetic Phenomena in Conducting Crystals [in Russian], Ural Branch, Russ. Acad. Sci., Ekaterinburg (2008).Google Scholar
  34. 34.
    G. Röpke, Nonequilibrium Statistical Mechanics, Wiley, New York (2013).zbMATHGoogle Scholar
  35. 35.
    A. A. Khamsin and R. R. Nigmatulin, Method of the Nonequilibrium Statistical Operator and Its Application to the Kinetics of Ising Magnets [in Russian] (Study guide), Kazan Univ., Kazan (2011).Google Scholar
  36. 36.
    I. M. Mryglod and M. V. Tokarchuk, “Toward the statistical hydrodynamics of simple liquids [in Russian],” Voprosy Atomnoi Nauki i Tekhniki, 3(24), 134–139 (1992).Google Scholar
  37. 37.
    I. M. Mryglod, I. P. Omelyan, and M. V. Tokarchuk, “Generalized collective modes for the Lennard-Jones fluid,” Mol. Phys., 84, 235–259 (1995).ADSCrossRefGoogle Scholar
  38. 38.
    B. B. Markiv, I. P. Omelyan, and M. V. Tokarchuk, “Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids,” Theor. Math. Phys., 154, 75–84 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    B. B. Markiv, I. P. Omelyan, and M. V. Tokarchuk, “Relaxation to the state of molecular hydrodynamics in the generalized hydrodynamics of liquids,” Phys. Rev. E, 82, 041202 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    I. M. Mryglod, “Generalized statistical hydrodynamics of fluids: Approach of generalized collective modes,” Condens. Matter Phys., 1, 753–796 (1998).CrossRefGoogle Scholar
  41. 41.
    I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, “Dielectric relaxation in dipolar fluids: Generalized mode approach,” Condens. Matter Phys., 1, 179–200 (1998).CrossRefGoogle Scholar
  42. 42.
    I. P. Omelyan, I. M. Mryglod, and M. V. Tokarchuk, “Generalized dipolar modes of a Stockmayer fluid in high-order approximations,” Phys. Rev. E., 57, 6667–6676 (1998).ADSCrossRefGoogle Scholar
  43. 43.
    I. M. Mryglod, M. V. Tokarchuk, and R. Folk, “On the hydrodynamic theory of a magnetic liquid I: General description,” Phys. A, 220, 325–348 (1995).CrossRefGoogle Scholar
  44. 44.
    I. M. Mryglod and M. V. Tokarchuk, “Statistical hydrodynamics of magnetic fluids: I. The nonequilibrium statistical operator method,” Theor. Math. Phys., 115, 479–495 (1998).zbMATHCrossRefGoogle Scholar
  45. 45.
    D. N. Zubarev and M. V. Tokarchuk, “Nonequilibrium statistical hydrodynamics of ionic systems,” Theor. Math. Phys., 70, 164–178 (1987).CrossRefGoogle Scholar
  46. 46.
    B. Markiv, A. Vasylenko, and M. Tokarchuk, “Statistical description of hydrodynamic processes in ionic melts while taking into account polarization effects,” J. Chem. Phys., 136, 234502 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    B. Markiv and M. Tokarchuk, “Effect of ion polarization on longitudinal excitations in ionic melts,” J. Chem. Phys., 143, 194509 (2015).ADSCrossRefGoogle Scholar
  48. 48.
    M. V. Tokarchuk, “On the statistical theory of a nonequilibrium plasma in its electromagnetic self-field,” Theor. Math. Phys., 97, 1126–1136 (1993).MathSciNetCrossRefGoogle Scholar
  49. 49.
    B. Markiv and M. Tokarchuk, “Consistent description of kinetics and hydrodynamics of dusty plasma,” Phys. Plasmas, 21, 023707 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    V. V. Ignatyuk, I. M. Mryglod, and M. V. Tokarchuk, “On the theory of dynamic properties of semiquantum helium,” Low Temperature Physics, 25, 295–302 (1999).ADSCrossRefGoogle Scholar
  51. 51.
    V. V. Ignatyuk, M. V. Tokarchuk, and I. M. Mryglod, “Time correlation functions and generalized transport coefficients of semiquantum helium,” Low Temperature Physics, 25, 857–863 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    P. P. Kostrobij, M. V. Tokarchuk, B. M. Markovych, V. V. Ignatyuk, and B. V. Gnativ, Reaction-Diffusion Processes in the “Metal.Gas” Systems [in Ukrainian], Lviv Polytechnic Natl. Univ. Press, Lviv (2009).Google Scholar
  53. 53.
    D. N. Zubarev, A. V. Prozorkevich, and S. A. Smolyanskii, “Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics,” Theor. Math. Phys., 40, 821–831 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    A. V. Prozorkevich, V. L. Samorodov, and S. A. Smolyanskii, “Quantum relativistic hydrodynamics of systems with broken symmetry: I. Local-equilibrium state,” Theor. Math. Phys., 52, 920–926 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    S. A. Smolyanskii, “Quantum relativistic hydrodynamics of systems with broken symmetry,” Theor. Math. Phys., 52, 809–814 (1982).MathSciNetCrossRefGoogle Scholar
  56. 56.
    F. Becattini and L. Tinti, “Nonequilibrium thermodynamical inequivalence of quantum stress.energy and spin tensors,” Phys. Rev. D, 87, 025029 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    L. Tinti, “Thermodynamical inequivalence of stress.energy and spin tensors,” in: Progress inMathematical Relativity, Gravitation, and Cosmology (Proc. Spanish Relativity Meeting ERE2012, Univ. of Minho, Guimaraes, Portugal, 3–7 September 2012, A. García-Parrado, F. C. Mena, F. Moura, and E. Vaz, eds.), Springer, Berlin (2014), pp. 433–437.zbMATHCrossRefGoogle Scholar
  58. 58.
    F. Becattini, L. Bucciantini, E. Grossi, and L. Tinti, “Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid,” Eur. Phys. J. C, 75, 191 (2015).ADSCrossRefGoogle Scholar
  59. 59.
    D. N. Zubarev and M. V. Tokarchuk, “Nonequilibrium thermofield dynamics and the nonequilibrium statistical operator method: I. Basic relations,” Theor. Math. Phys., 88, 876–893 (1991).CrossRefGoogle Scholar
  60. 60.
    M. V. Tokarchuk, T. Arimitsu, and A. E. Kobryn, “Thermo field hydrodynamic and kinetic equations of dense quantum nuclear systems,” Condens. Matter Phys., 1, 605–642 (1998).CrossRefGoogle Scholar
  61. 61.
    D. N. Zubarev and V. N. Klimov, “Toward a theory of a temperature jump on a plasma boundary in a magnetic field,” in: Plasma Physics and the Problem of Controlled Thermonuclear Reactions [in Russian], Vol. 1, Acad. Sci. USSR Press, Moscow (1958), pp. 138–160; English transl.: Plasma Physics and the Problem of Controlled Thermonuclear Research (M. A. Leontovich, ed.), Pergamon, Oxford (1961).Google Scholar
  62. 62.
    D. N. Zubarev and V. N. Klimov, “Stationary regimes of a magnetic nuclear reactor,” in: Plasma Physics and the Problem of Controlled Thermonuclear Reactions [in Russian], Vol. 1, Acad. Sci. USSR Press, Moscow (1958), pp. 249–288; English transl.: Plasma Physics and the Problem of Controlled Thermonuclear Research (M. A. Leontovich, ed.), Pergamon, Oxford (1961).Google Scholar
  63. 63.
    A. V. Nedospasov, “Physics of near-wall plasma in tokamaks,” Sov. Phys. Usp., 30, 620–627 (1987).ADSCrossRefGoogle Scholar
  64. 64.
    A. V. Nedospasov and M. Z. Tokar’ “Near-wall plasma in tokamaks,” in: Issues in Plasma Theory [in Russian] (No. 18, B. B. Kadomtsev, ed.), Energoatomizdat, Moscow (1990), p. 68–208.Google Scholar
  65. 65.
    V. N. Tsytovich, “Dust plasma crystals, drops, and clouds,” Phys. Usp., 40, 53–94 (1997).ADSCrossRefGoogle Scholar
  66. 66.
    V. N. Tsytovich and J. Winter, “On the role of dust in fusion devices,” Phys. Usp., 41, 815–822 (1998).ADSCrossRefGoogle Scholar
  67. 67.
    V. N. Tsytovich, “Self-organized dusty structures in a complex plasma under microgravity conditions: Prospects for experimental and theoretical studies,” Phys. Usp., 58, 150–166 (2015).ADSCrossRefGoogle Scholar
  68. 68.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, “Dusty plasmas,” Phys. Usp., 47, 447–492 (2004).ADSCrossRefGoogle Scholar
  69. 69.
    D. N. Zubarev, V. G. Morozov, I. P. Omelyan, and M. V. Tokarchuk, “Kinetic equations for dense gases and liquids,” Theor. Math. Phys., 87, 412–424 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    D. N. Zubarev, V. G. Morozov, I. P. Omelyan, and M. V. Tokarchuk, “Unification of the kinetic and hydrodynamic approaches in the theory of dense gases and liquids,” Theor. Math. Phys., 96, 997–1012 (1993).zbMATHCrossRefGoogle Scholar
  71. 71.
    M. V. Tokarchuk, I. P. Omelyan, and A. E. Kobryn, “A consistent description of kinetics and hydrodynamics of systems of interacting particles by means of the nonequilibrium statistical operator method,” Condens. Matter Phys., 1, 687–751 (1998).CrossRefGoogle Scholar
  72. 72.
    A. E. Kobryn, I. P. Omelyan, and M. V. Tokarchuk, “The modified group expansions for construction of solutions to the BBGKY hierarchy,” J. Statist. Phys., 92, 973–994 (1998).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    B. Markiv, I. Omelyan, and M. Tokarchuk, “Consistent description of kinetics and hydrodynamics of weakly nonequilibrium processes in simple liquids,” J. Statist. Phys., 155, 843–866 (2014).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    D. N. Zubarev and V. G. Morozov, “Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws,” Theor. Math. Phys., 60, 814–820 (1984).CrossRefGoogle Scholar
  75. 75.
    V. G. Morozov, A. E. Kobryn, and M. V. Tokarchuk, “Modified kinetic theory with consideration for slow hydrodynamical processes,” Condens. Matter Phys., 117–127 (1994).Google Scholar
  76. 76.
    P. A. Hlushak and M. V. Tokarchuk, “Chain of kinetic equations for the distribution functions of particles in simple liquid taking into account nonlinear hydrodynamic fluctuations,” Phys. A, 443, 231–245 (2016).MathSciNetCrossRefGoogle Scholar
  77. 77.
    I. R. Yukhnovskii, P. A. Hlushak, and M. V. Tokarchuk, “BBGKY chain of kinetic equations, non-equilibrium statistical operator method, and collective variable method in the statistical theory of non-equilibrium liquids,” Condens. Matter Phys., 19, 43705 (2016).CrossRefGoogle Scholar
  78. 78.
    D. N. Zubarev, “Statistical thermodynammics of turbulent transport processes,” Theor. Math. Phys., 53, 1004–1014 (1982).CrossRefGoogle Scholar
  79. 79.
    B. B. Markiv, R. M. Tokarchuk, P. P. Kostrobij, and M. V. Tokarchuk, “Nonequilibrium statistical operator method in Renyi statistics,” Phys. A, 390, 785–791 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    P. Kostrobij, R. Tokarchuk, M. Tokarchuk, and B. Markiv, “Zubarev nonequilibrium statistical operator method in Renyi statistics: Reaction–diffusion processes,” Condens. Matter Phys., 17, 33005 (2014).zbMATHCrossRefGoogle Scholar
  81. 81.
    P. P. Kostrobii, A. V. Viznovych, B. B. Markiv, and M. V. Tokarchuk, “Generalized kinetic equations for dense gases and liquids in the Zubarev nonequilibrium statistical operator method and Renyi statistics,” Theor. Math. Phys., 184, 1020–1032 (2015).zbMATHCrossRefGoogle Scholar
  82. 82.
    A. Rényi, Probability Theory (North-Holland Ser. Appl. Math. Mech., Vol. 10), North-Holland, Amsterdam (1970).Google Scholar
  83. 83.
    Ju. L. Klimontovich, Introduction to the Physics of Open Systems [in Russian], Janus-K, Moscow (2002).Google Scholar
  84. 84.
    A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems,” Theor. Math. Phys., 149, 1559–1573 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, “Non-equilibrium statistical mechanics of complex systems: An overview,” Riv. Nuovo Cimento, 30, 95–158 (2007).Google Scholar
  86. 86.
    A. R. Vasconcellos, J. G. Ramos, A. Gorenstein, M. U. Kleinke, T. G. Souza Cruz, and R. Luzzi, “Statistical approach to non-Fickian diffusion,” Internat. J. Modern Phys. B, 20, 4821–4841 (2006).ADSzbMATHCrossRefGoogle Scholar
  87. 87.
    R. R. Nigmatullin, “Fractional integral and its physical interpretation,” Theor. Math. Phys., 90, 242–251 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” J. Statist. Phys., 52, 479–487 (1988).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    C. Tsallis, ed., Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York (2009).zbMATHGoogle Scholar
  90. 90.
    P. Turán, ed., Selected Papers by Alfréd Rényi, Vols. 1 and 2, Akadémiai Kiadó, Budapest (1976).zbMATHGoogle Scholar
  91. 91.
    B. D. Sharma and D. P. Mittal, “New nonadditive measures of entropy for discrete probability distributions,” J. Math. Sci., 10, 28–40 (1975).MathSciNetGoogle Scholar
  92. 92.
    E. Aktürk, G. B. Bağci, and R. Sever, “Is Sharma–Mittal entropy really a step beyond Tsallis and Rényi entropies?” arXiv:cond-mat/0703277v1 (2007).Google Scholar
  93. 93.
    C. Beck, “Superstatistics: Theory and applications,” Contin. Mech. Thermodyn., 16, 293–304 (2004).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    C. Beck, “Superstatistics: Theoretical concepts and physical applications,” in: Anomalous Transport: Foundations and Applications (R. Klages, G. Radons, and I. M. Sokolov, eds.), Wiley-VCH, New York (2008), pp. 433–457.CrossRefGoogle Scholar
  95. 95.
    V. V. Uchaikin, Method of Fractional Derivatives [in Russian], Artishok, Ul’ianovsk (2008).Google Scholar
  96. 96.
    D. Korošak, B. Cvikl, J. Kramer, R. Jecl, and A. Prapotnik, “Fractional calculus applied to the analysis of spectral electrical conductivity of clay–water system,” J. Contain. Hydrol., 92, 1–9 (2007).ADSCrossRefGoogle Scholar
  97. 97.
    R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep., 339, 1–77 (2000).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    J. Bisquert and A. Compte, “Theory of the electrochemical impedance of anomalous diffusion,” J. Electroanal. Chem., 499, 112–120 (2001).CrossRefGoogle Scholar
  99. 99.
    T. Kosztołowicz and K. D. Lewandowska, “Hyperbolic subdiffusive impedance,” J. Phys. A: Math. Theor., 42, 055004 (2009).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: Statistical mechanisms, models, and physical applications,” Phys. Rep., 195, 127–293 (1990).ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    R. R. Nigmatullin, “To the theoretical explanation of the ‘Universal response’,” Phys. Stat. Sol. (b), 123, 739–745 (1984).ADSCrossRefGoogle Scholar
  102. 102.
    R. R. Nigmatullin, “On the theory of relaxation for systems with ‘remnant’ memory,” Phys. Stat. Sol. (b), 124, 389–339 (1984).ADSCrossRefGoogle Scholar
  103. 103.
    R. R. Nigmatullin, “The realization of the generalized transfer equation in a medium with fractal geometry,” Phys. Stat. Sol. (b), 133, 425–430 (1986).ADSCrossRefGoogle Scholar
  104. 104.
    A. A. Khamzin, R. R. Nigmatullin, and I. I. Popov, “Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization,” Theor. Math. Phys., 173, 1604–1619 (2012).zbMATHCrossRefGoogle Scholar
  105. 105.
    R. Balescu, “Anomalous transport in turbulent plasmas and continuous time random walks,” Phys. Rev. E, 51, 4807–4822 (1995).ADSCrossRefGoogle Scholar
  106. 106.
    M. Tribeche and P. K. Shukla, “Charging of a dust particle in a plasma with a non extensive electron distribution function,” Phys. Plasmas, 18, 103702 (2011).ADSCrossRefGoogle Scholar
  107. 107.
    V. E. Tarasov, “Electromagnetic field of fractal distribution of charged particles,” Phys. Plasmas, 12, 082106 (2005).ADSCrossRefGoogle Scholar
  108. 108.
    A. S. Monin, “Equation of turbulent diffusion,” Dokl. Akad. Nauk SSSR, n.s., 2, 256–259 (1955).MathSciNetzbMATHGoogle Scholar
  109. 109.
    G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,” Phys. Rep., 371, 461–580 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987); English transl.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach (1993).zbMATHGoogle Scholar
  111. 111.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, and Some of Their Applications (Math. Sci. Engin., Vol. 198), Acad. Press, San Diego, Calif. (1999).Google Scholar
  112. 112.
    V. E. Tarasov, “Fractional generalization of Liouville equations,” Chaos, 14, 123–127 (2004).ADSCrossRefGoogle Scholar
  113. 113.
    V. E. Tarasov, “Fractional Liouville and BBGKI equations,” J. Phys.: Conf. Ser., 7, 117–133 (2005).Google Scholar
  114. 114.
    V. E. Tarasov, “Fractional systems and fractional Bogoliubov hierarchy equations,” Phys. Rev. E, 71, 011102 (2005).ADSMathSciNetCrossRefGoogle Scholar
  115. 115.
    V. E. Tarasov, “Fractional statistical mechanics,” Chaos, 16, 033108 (2006).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    V. E. Tarasov, “Transport equations from Liouville equations for fractional systems,” Internat. J. Modern Phys. B, 20, 341–353 (2006).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    K. Cottrill-Shepherd and M. Naber, “Fractional differential forms,” J. Math. Phys., 42, 2203–2212 (2001).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    F. Mainardi, “Fractional calculus: Some basic problems in continuum and statistical mechanics,” in: Fractals and Fractional Calculus in Continuum Mechanics (CISM Intl. Centre for Mechanical Sciences: Courses and Lectures, Vol. 378, A. Carpinteri and F. Mainardi, eds.), Springer, Vienna (1997), p. 291–348.CrossRefGoogle Scholar
  119. 119.
    M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” Pure Appl. Geophys., 91, 134–147 (1971).ADSzbMATHCrossRefGoogle Scholar
  120. 120.
    P. Kostrobij, B. Markovych, O. Viznovych, and M. Tokarchuk, “Generalized diffusion equation with fractional derivatives within Renyi statistics,” J. Math. Phys., 57, 093301 (2016).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    A. Compte and R. Metzler, “The generalized Cattaneo equation for the description of anomalous transport processes,” J. Phys. A: Math. Gen., 30, 7277–7289 (1997).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    I. I. Grygorchak, F O. Ivashchyshyn, M. V. Tokarchuk, N. T. Pokladok, and O. V. Viznovych, “Modification of properties of GaSe(β-cyclodexterin(FeSO4)) Clathrat by synthesis in superposed electric and light-wave fields,” J. Appl. Phys., 121, 185501 (2017).ADSCrossRefGoogle Scholar
  123. 123.
    T. D. Lee, “The strongly interacting quark.gluon plasma and future physics,” Nucl. Phys. A, 750, 1–8 (2005).ADSCrossRefGoogle Scholar
  124. 124.
    M. Gyulassy and I. McLerran, “New forms of QCD matter discovered at RHIC,” Nucl. Phys. A, 750, 30–63 (2005).ADSCrossRefGoogle Scholar
  125. 125.
    E. V. Shuryak, “What RHIC experiments and theory tell us about properties of quark-gluon plasma?” Nucl. Phys. A, 750, 64–83 (2005).ADSCrossRefGoogle Scholar
  126. 126.
    T. Hirano, N. Van Der Kolk, and A. Bilandzic, “Hydrodynamics and flow,” in: The Physics of the Quark-Gluon Plasma: Introductory Lectures (Lect. Notes Phys., Vol. 785, S. Sarkar, H. Satz, and B. Sinha, eds.), Springer, New York (2010), pp. 139–178.Google Scholar
  127. 127.
    T. S. Biró and E. Molnár, “Non-extensive statistics, relativistic kinetic theory, and fluid dynamics,” Eur. Phys. J. A, 48, 172 (2012).ADSCrossRefGoogle Scholar
  128. 128.
    T. Osada and G. Wilk, “Nonextensive/dissipative correspondence in relativistic hydrodynamics,” Progr. Theor. Phys. Suppl., 174, 168–172 (2008).ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    T. Osada and G. Wilk, “Nonextensive hydrodynamics for relativistic heavy-ion collisions,” Phys. Rev. C., 77, 044903 (2008).ADSCrossRefGoogle Scholar
  130. 130.
    T. Osada and G. Wilk, “Nonextensive perfect hydrodynamics — a model of dissipative relativistic hydrodynamics?” Cent. Eur. J. Phys., 7, 432–443 (2009).Google Scholar
  131. 131.
    T. Osada, “Relativistic hydrodynamical model in the presence of long-range correlations,” Phys. Rev. C., 81, 024907 (2010).ADSCrossRefGoogle Scholar
  132. 132.
    A. Lavagno, “Relativistic nonextensive thermodynamics,” Phys. Lett. A, 301, 13–18 (2002).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    G. Gianpiero, A. Lavagno, and D. Pigato, “Nonextensive statistical effects in the quark-gluon plasma formation at relativistic heavy-ion collisions energies,” Open Phys., 10, 594–601 (2012).ADSGoogle Scholar
  134. 134.
    A. Lavagno and D. Pigato, “Nonextensive statistical effects and strangeness production in hot and dense nuclear matter,” J. Phys. G: Nucl. Part., 39, 125106 (2012).ADSCrossRefGoogle Scholar
  135. 135.
    A. Lavagno and D. Pigato, “Nonextensive nuclear liquid.gas phase transition,” Phys. A, 392, 5164–5171 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  136. 136.
    H. Umezawa, H. Matsumoto, and M. Tachiki, Thermofield Dynamics and Condensed States, North-Holland, Amsterdam (1982).Google Scholar
  137. 137.
    L. Leplae, H. Umezawa, and F. Mancini, “Derivation and application of the boson method in superconductivity,” Phys. Rep., 10, 151–272 (1974).ADSCrossRefGoogle Scholar
  138. 138.
    Y. Takahashi and H. Umezawa, “Thermo field dynamics,” Collect. Phenom., 2, 55–80 (1975); reprinted in: Internat. J. Modern Phys. B, 10, 1755–1805 (1996).MathSciNetzbMATHGoogle Scholar
  139. 139.
    T. Arimitsu and H. Umezawa, “A general formulation of nonequlibrium thermo field dynamics,” Progr. Theoret. Phys., 74, 429–432 (1985).ADSMathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    T. Arimitsu and H. Umezawa, “Non-equilibrium thermo field dynamics,” Progr. Theor. Phys., 77, 32.52 (1987).Google Scholar
  141. 141.
    T. Arimitsu, “A canonical formalism of dissipative quantum systems: Non-equilibrium thermofield dynamics,” Condens. Matter Phys., 4, 26–88 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Glushak
    • 1
  • B. B. Markiv
    • 2
  • M. V. Tokarchuk
    • 1
    Email author
  1. 1.Institute of Physics of Condensed SystemsNational Academy of Sciences of UkraineLvivUkraine
  2. 2.GlobalLogic UkraineLvivUkraine

Personalised recommendations