Advertisement

Theoretical and Mathematical Physics

, Volume 193, Issue 3, pp 1834–1843 | Cite as

Holographic control of information and dynamical topology change for composite open quantum systems

  • I. Ya. Aref’ eva
  • I. V. Volovich
  • O. V. Inozemcev
Article

Abstract

We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

Keywords

holographic entanglement entropy mutual information AdS/CFT Vaidya 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems, Springer, Dordrecht, (2011).CrossRefMATHGoogle Scholar
  2. 2.
    I. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv:1603.09107v2 [hep-th] (2016).Google Scholar
  3. 3.
    M. Mohseni, Y. Omar, G. S. Engel, and M. B. Plenio, eds., Quantum Effects in Biology, Cambridge Univ. Press, Cambridge (2014).CrossRefGoogle Scholar
  4. 4.
    O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory, and gravity,” Phys. Rep., 323, 183–386 (2000); arXiv:hep-th/9905111v3 (1999).ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    I. Ya. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp., 57, 527–555 (2014).CrossRefGoogle Scholar
  6. 6.
    I. Y. Aref’eva, “QGP time formmation in holographic shock waves model of heavy ion collisions,” Theor. Math. Phys., 184, 1239–1256 (2015); arXiv:1503.02185v1 [hep-th] (2015).CrossRefMATHGoogle Scholar
  7. 7.
    D. S. Ageev and I. Ya. Aref’eva, “Waking and scrambling in holographic heating up,” Theor. Math. Phys., 193, 1534-1546.Google Scholar
  8. 8.
    D. S. Ageev and I. Y. Aref’eva, “Memory loss in holographic non-equilibrium heating,” arXiv:1704.07747v1 [hep-th] (2017).Google Scholar
  9. 9.
    I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    I. Ya. Aref’eva and M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics,” JHEP, 1604, 121 (2016).ADSMathSciNetGoogle Scholar
  11. 11.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” EPL, 113, 30005 (2016).CrossRefGoogle Scholar
  12. 12.
    I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A, 380, 56–58 (2016).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Y. Aref’eva, M. A. Khramtsov, and M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench,” JHEP, 2017, 115 (1709); arXiv:1706.07390v3 [hep-th] (2017).CrossRefGoogle Scholar
  14. 14.
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, “Holographic thermalization,” Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).ADSCrossRefGoogle Scholar
  15. 15.
    S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence,” Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic entanglement entropy proposal,” JHEP, 0707, 062 (2007); arXiv:0705.0016v3 [hep-th] (2007).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    V. E. Hubeny, M. Rangamani, and E. Tonni, “Thermalization of causal holographic information,” JHEP, 1305, 136 (2013); arXiv:1302.0853v3 [hep-th] (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. Alishahiha, M. R. M. Mozaffar, and M. R. Tanhayi, “On the time evolution of holographic n-partite information,” JHEP, 1509, 165 (2015); arXiv:1406.7677v4 [hep-th] (2014).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Ben-Ami, D. Carmi, and J. Sonnenschein, “Holographic entanglement entropy of multiple strips,” JHEP, 1411, 144 (2014); arXiv:1409.6305v2 [hep-th] (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. Ya. Aref’ eva
    • 1
  • I. V. Volovich
    • 1
  • O. V. Inozemcev
    • 1
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations