Advertisement

Theoretical and Mathematical Physics

, Volume 193, Issue 2, pp 1675–1679 | Cite as

Multipoint scatterers with bound states at zero energy

  • P. G. Grinevich
  • R. G. Novikov
Article
  • 19 Downloads

Abstract

We study multipoint scatterers with bound states at zero energy in three-dimensional space. We construct examples of such scatterers with multiple zero eigenvalues or with strong multipole localization of zeroenergy bound states.

Keywords

Schrödinger equation multipoint scatterer bound state zero energy localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bethe and R. Peierls, “Quantum theory of the diplon,” Proc. Roy. Soc. London Ser. A, 148, 146–156 (1935).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate,” Ric. Sci., 7, 13–52 (1936).zbMATHGoogle Scholar
  3. 3.
    Ya. B. Zel’dovich, “Scattering by a singular potential in perturbation theory and in the momentum representation,” Soviet Phys. JETP, 11, 594–597 (1960).MathSciNetGoogle Scholar
  4. 4.
    F. A. Berezin and L. D. Faddeev, “A remark on Schrödinger equation with singular potential,” Soviet Mathematics, 2, 372–375 (1961).zbMATHGoogle Scholar
  5. 5.
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York (1988).CrossRefzbMATHGoogle Scholar
  6. 6.
    G. Dell’Antonio, R. Figari, and A. Teta, “A brief review on point interactions,” in: Inverse Problems and Imaging (Lect. Notes Math., Vol. 1943, L. L. Bonilla, ed.), Springer, Berlin (2008), pp. 171–189.CrossRefGoogle Scholar
  7. 7.
    N. P. Badalyan, V. A. Burov, S. A. Morozov, and O. D. Rumyantseva, “Scattering by acoustic boundary scattering with small wave sizes and their reconstruction,” Acoustical Physics, 55, 1–7 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    P. G. Grinevich and R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials,” Euras. J. Math. Computer Appl., 1, 76–91 (2013); arXiv:1110.3157v1 [math-ph] (2011).Google Scholar
  9. 9.
    I. A. Taimanov and S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L2-kernel,” Russ. Math. Surveys, 62, 631–633 (2007).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical Physics, RASChernogolovkaRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute for Physics and Technology (State University)DolgoprudnyRussia
  4. 4.Centre de Mathématiques AppliquéesÉcole PolytechniquePalaiseauFrance
  5. 5.Université Paris SaclayParisFrance
  6. 6.Institute of Earthquake Prediction Theory and Mathematical Geophysics, RASMoscowRussia

Personalised recommendations