Advertisement

Theoretical and Mathematical Physics

, Volume 192, Issue 2, pp 1154–1161 | Cite as

Second-order evaluations of orthogonal and symplectic Yangians

  • D. R. Karakhanyan
  • R. Kirschner
Article
  • 24 Downloads

Abstract

Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental R-matrix with the corresponding so(n) or sp(2m) symmetry. We investigate the second-order solution conditions, where the expansion of L(u) in u −1 is truncated at the second power, and we derive the relations for the two nontrivial terms in L(u).

Keywords

integrable systems Yang–Baxter relation orthogonal Lie algebra symplectic Lie algebra truncated Yangian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method. I,” Theor. Math. Phys., 40, 688–706 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    V. O. Tarasov, L. A. Takhtadzhyan, and L. D. Faddeev, “Local Hamiltonians for integrable quantum models on a lattice,” Theor. Math. Phys., 57, 1059–1073 (1983).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method: Recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), pp. 61–119.CrossRefGoogle Scholar
  4. 4.
    L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Quantum Symmetries/Symétries Quantiques (Les Houches Summer School on Theoretical Physics, Session 64, A. Connes, K. Kawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–211; arXiv:hep-th/9605187v1 (1996).Google Scholar
  5. 5.
    V. G. Drinfeld, “Hopf algebras and quantum Yang–Baxter equations,” Sov. Math. Dokl., 32, 254–258 (1985).Google Scholar
  6. 6.
    V. G. Drinfeld, “Quantum groups,” J. Soviet Math., 41, 898–915 (1988).CrossRefGoogle Scholar
  7. 7.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, “Factorized S-Matrices in two-dimensions as the exact solutions of certain relativistic quantum field models,” Ann. Phys., 120, 253–291 (1979)ADSMathSciNetCrossRefGoogle Scholar
  8. 7a.
    Al. B. Zamolodchikov, “Factorizable scattering in asymptotically free 2-dimensional models of quantum field theory [in Russian],” Doctoral dissertation, Joint Inst. Nucl. Res., Dubna (1979).Google Scholar
  9. 8.
    B. Berg, M. Karowski, P. Weisz, and V. Kurak, “Factorized U(n) symmetric S matrices in two-dimensions,” Nucl. Phys. B, 134, 125–132 (1978).ADSMathSciNetCrossRefGoogle Scholar
  10. 9.
    N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry,” Theor. Math. Phys., 63, 555–569 (1985).CrossRefGoogle Scholar
  11. 10.
    A. P. Isaev, “Quantum groups and Yang–Baxter equations,” Preprint 2004-132, http://webdoc.sub.gwdg.de/ebook/serien/e/mpi mathematik/2004/132.pdf, Max-Plank-Institut für Mathematik, Bonn (2004).Google Scholar
  12. 11.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J., 1, 193–225 (1990).MathSciNetzbMATHGoogle Scholar
  13. 12.
    R. Shankar and E. Witten, “The S matrix of the kinks of the (gyψ)2 model,” Nucl. Phys. B, 141, 349–363 (1978); Erratum, 148, 538–539 (1979).ADSCrossRefGoogle Scholar
  14. 13.
    D. Chicherin, S. Derkachov, and A. P. Isaev, “Conformal group: R-matrix and star–triangle relation,” JHEP, 1304, 020 (2013); arXiv:1206.4150v2 [math-ph] (2012); “The spinorial R-matrix,” J. Phys. A: Math. Theor., 46, 485201 (2013); arXiv:1303.4929v1 [math-ph] (2013).ADSCrossRefzbMATHGoogle Scholar
  15. 14.
    A. P. Isaev, D. Karakhanyan, and R. Kirschner, “Orthogonal and symplectic Yangians and Yang–Baxter R operators,” Nucl. Phys. B, 904, 124–147 (2016); arXiv:1511.06152v1 [math-ph] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 15.
    D. Karakhanyan and R. Kirschner, “Yang–Baxter relations with orthogonal or symplectic symmetry,” J. Phys. Conf. Ser., 670, 012029 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Yerevan Physics InstituteYerevanArmenia
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations