Theoretical and Mathematical Physics

, Volume 192, Issue 2, pp 1134–1140 | Cite as

Renormalization scenario for the quantum Yang–Mills theory in four-dimensional space–time

  • C. E. DerkachevEmail author
  • A. V. Ivanov
  • L. D. Faddeev


We consider the renormalization of the Yang–Mills theory in four-dimensional space–time using the background-field formalism.


quantum theory of Yang–Mills fields effective action renormalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Faddeev, “Scenario for the renormalization in the 4D Yang–Mills theory,” Internat. J. Modern Phys. A, 31, 1630001 (2016); arXiv:1509.06186v2 [hep-th] (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    B. S. DeWitt, “Quantum theory of gravity: II. The manifestly covariant theory,” Phys. Rev., 162, 1195–1239 (1967); “Quantum theory of gravity: III. Applications of the covariant theory,” Phys. Rev., 162, 1239–1256 (1967).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    G. ’t Hooft, “The background field method in gauge field theories,” in: Functional and Probabilistic Methods in Quantum Field Theory (Acta Universitatis Wratislaviensis, Vol. 1, No. 368, B. Jancewicz, ed.), Wroclaw Univ., Wroclaw (1976), pp. 345–369.Google Scholar
  4. 4.
    L. F. Abbott, “Introduction to the background field method,” Acta Phys. Polon. B, 13, 33–50 (1982).MathSciNetGoogle Scholar
  5. 5.
    I. Ya. Aref’eva, A. A. Slavnov, and L. D. Faddeev, “Generating functional for the S-matrix in gauge-invariant theories,” Theor. Math. Phys., 21, 1165–1172 (1974).CrossRefGoogle Scholar
  6. 6.
    A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1978); English transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Benjamin/Cummings, Reading, Mass. (1980).zbMATHGoogle Scholar
  7. 7.
    L. D. Faddeev, “Mass in quantum Yang–Mills theory (comment on a Clay millenium problem),” Bull. Braz. Math. Soc., n.s., 33, 201–212 (2002); arXiv:0911.1013v1 [math-ph] (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. Fock, “Proper time in classical and quantum mechanics,” Phys. Z. Sowjetunion, 12, 404–425 (1937).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • C. E. Derkachev
    • 1
    Email author
  • A. V. Ivanov
    • 1
  • L. D. Faddeev
    • 1
  1. 1.St. Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations