Theoretical and Mathematical Physics

, Volume 192, Issue 2, pp 1129–1133 | Cite as

Remark on the reflection coefficient in the Liouville model

  • S. E. DerkachevEmail author
  • L. D. Faddeev


We show that the reflection coefficients in the quantum theory of the Liouville model calculated in the bootstrap and Hamiltonian approaches differ from each other by a phase factor and simply yield different normalizations of vertex operators.


Liouville quantum model conformal bootstrap conformal field theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, “Conformal bootstrap in Liouville field theory,” Nucl. Phys. B, 477, 577–605 (1996); “Structure constants and conformal bootstrap in Liouville field theory,” arXiv:hep-th/9506136v2 (1995).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. D. Faddeev and L. A. Takhtajan, “Liouville model on the lattice,” in: Field Theory, Quantum Gravity, and Strings (Lect. Notes Phys., Vol. 246, H. J. de Vega and N. Sanchez, eds.), Springer, Berlin (1986), pp. 166–179.Google Scholar
  3. 3.
    J. Teschner, “Liouville theory revisited,” Class. Q. Grav., 18, R153–R222 (2001); arXiv:hep-th/0104158v3 (2001).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. D. Faddeev and A. Yu. Volkov, “Discrete evolution for the zero-modes of the quantum Liouville model,” J. Phys. A, 41, 194008 (2008); arXiv:0803.0230v1 [hep-th] (2008).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. D. Faddeev, “Zero modes for the quantum Liouville model,” Funct. Anal. Appl., 48, 166–174 (2014); arXiv:1404.1713v1 [hep-th] (2014).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations