Theoretical and Mathematical Physics

, Volume 192, Issue 2, pp 1115–1128 | Cite as

The generating function of bivariate Chebyshev polynomials associated with the Lie algebra G2

Article

Abstract

We construct the generating function of the second-kind bivariate Chebyshev polynomials associated with the simple Lie algebra G2using a previously proposed method.

Keywords

bivariate Chebyshev polynomial generating function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Damaskinsky, P. P. Kulish, and M. A. Sokolov, “On calculation of generating functions of multivariate Chebyshev polynomials,” Preprint 13/2014, POMI, St. Petersburg (2014).MATHGoogle Scholar
  2. 2.
    E. V. Damaskinsky, P. P. Kulish, and M. A. Sokolov, “On calculation of generating functions of Chebyshev polynomials in several variables,” J. Math. Phys., 56, 063507 (2015); arXiv:1502.08000v2 [math-ph] (2015).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    M. A. Sokolov, “Generating functions of Chebyshev polynomials in three variables,” J. Math. Sci. (N. Y.), 213, 786–794 (2016); arXiv:1502.08027v1 [math-ph] (2015).CrossRefMATHGoogle Scholar
  4. 4.
    P. P. Kulish, “Integrable spin chains and representation theory,” in: Symmetries and Groups in Contemporary Physics (Nankai Series Pure Appl, Math. Theoret. Phys., Vol. 11, C. Bai, J.-P. Gazeau, and M.-L. Ge, eds.), World Scientific, Singapore (2013), pp. 487–492.CrossRefGoogle Scholar
  5. 5.
    T. H. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators: I,” Indag. Math., 77, 48–58 (1974); “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators: II,” Indag. Math., 77, 59–66 (1974); “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators: III,” Indag. Math., 77, 357–369 (1974); “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators: IV,” Indag. Math., 77, 370–381 (1974).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    P. K. Suetin, Orthogonal Polynomials in Two Variables [in Russian], Nauka, Moscow (1988); English transl. (Analyt. Meth. Special Funct., Vol. 3), Gordon and Breach, Amsterdam (1999).MATHGoogle Scholar
  7. 7.
    P. K. Suetin, Classical Orthogonal Polynomials [in Russian], Nauka, Moscow (1979).MATHGoogle Scholar
  8. 8.
    T. J. Rivlin, The Chebyshev Polynomials, Wiley, New York (1974).MATHGoogle Scholar
  9. 9.
    B. N. Ryland and H. Z. Munthe-Kaas, “On multivariate Chebyshev polynomials and spectral approximations on triangles,” in: Spectral and High Order Methods for Partial Differential Equations (Lect. Notes Comp. Sci. Engin., Vol. 76, J. S. Hesthaven and E. M. Rønquist, eds.), Springer, Berlin (2011), pp. 19–41.CrossRefGoogle Scholar
  10. 10.
    B. Shapiro and M. Shapiro, “On eigenvalues of rectangular matrices,” Proc. Steklov Inst. Math., 267, 248–255 (2009).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    P. Alexandersson and B. Shapiro, “Around a multivariate Schmidt–Spitzer theorem,” Linear Algebra Appl., 446, 356–368 (2014).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P. P. Kulish, V. D. Lyakhovsky, and O. V. Postnova, “Multiplicity function for tensor powers of modules of the An algebra,” Theor. Math. Phys., 171, 666–674 (2012).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    P. P. Kulish, V. D. Lyakhovsky, and O. V. Postnova, “Tensor power decomposition: B n-case,” J. Phys.: Conf. Ser., 343, 012095 (2012).Google Scholar
  14. 14.
    V. D. Lyakhovsky, “Multivariate Chebyshev polynomials in terms of singular elements,” Theor. Math. Phys., 175, 797–805 (2013).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    G. von Gehlen and S. Roan, “The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials,” in: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (NATO Sci. Ser., Vol. 35, S. Pakuliak and G. Von Gehlen, eds.), Springer, Berlin (2001), pp. 155–172.CrossRefGoogle Scholar
  16. 16.
    G. von Gehlen, “Onsager’s algebra and partially orthogonal polynomials,” Internat. J. Modern Phys. B, 16, 2129–2136 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    V. V. Borzov and E. V. Damaskinsky, “Chebyshev–Koornwinder oscillator,” Theor. Math. Phys., 175, 763–770 (2013).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    V. V. Borzov and E. V. Damaskinsky, “The algebra of two dimensional generalized Chebyshev–Koornwinder oscillator,” J. Math. Phys., 55, 103505 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    G. J. Heckman, “Root systems and hypergeometric functions: II,” Compositio Math., 64, 353–373 (1987).MathSciNetMATHGoogle Scholar
  20. 20.
    M. E. Hoffman and W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups,” Trans. Amer. Math. Soc., 308, 91–104 (1988).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R. J. Beerends, “Chebyshev polynomials in several variables and the radial part Laplace–Beltrami operator,” Trans. Amer. Math. Soc., 328, 779–814 (1991).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Klimyk and J. Patera, “Orbit functions,” SIGMA, 2, 006 (2006).MathSciNetMATHGoogle Scholar
  23. 23.
    V. D. Lyakhovsky and Ph. V. Uvarov, “Multivariate Chebyshev polynomials,” J. Phys. A: Math. Theor., 46, 125201 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    K. B. Dunn and R. Lidl, “Generalizations of the classical Chebyshev polynomials to polynomials in two variables,” Czechoslovak Math. J., 32, 516–528 (1982).MathSciNetMATHGoogle Scholar
  25. 25.
    P. P. Kulish, “Models solvable by Bethe ansatz,” J. Gen. Lie Theory Appl., 2, 190–200 (2008).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method: I,” Theor. Math. Phys., 40, 688–706 (1979).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform methods: Recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), pp. 61–119.CrossRefGoogle Scholar
  28. 28.
    P. P. Kulish and N. Yu. Reshetikhin, “Quantum linear problem for the sine-Gordon equation and higher representations,” J. Soviet Math., 23, 2435–2441 (1983).CrossRefGoogle Scholar
  29. 29.
    V. G. Drinfeld, “Quantum groups,” in: Proc. Intl. Congr. Math. (Berkeley, California, 3–11 August 1986, A. M. Gleason, ed.), Amer. Math. Soc., Providence, R. I. (1987), pp. 798–820.Google Scholar
  30. 30.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J., 1, 193–225 (1990).MathSciNetMATHGoogle Scholar
  31. 31.
    L. A. Takhtadzhyan and L. D. Faddeev, “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model,” J. Soviet Math., 24, 241–267 (1984).CrossRefMATHGoogle Scholar
  32. 32.
    H. N. V. Temperley and E. H. Lieb, “Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the ‘percolation’ problem,” Proc. Roy. Soc. London Ser. A, 322, 251–280 (1971).ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    P. P. Martin, Potts Models and Related Problems in Statistical Mechanics (Ser. Adv. Stat. Mech., Vol. 5), World Scientific, Singapore (1991).CrossRefMATHGoogle Scholar
  34. 34.
    R. Brauer, “On algebras which are connected with the semisimple continuous groups,” Ann. Math. (2), 38, 857–872 (1937).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    H. Wenzl, “On the structure of Brauer’s centralizer algebras,” Ann. Math., 128, 173–193 (1988).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    J. S. Birman and H. Wenzl, “Braids, link polynomials, and a new algebra,” Trans. Amer. Math. Soc., 313, 249–273 (1989).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    J. Murakami, “The Kauffman polynomial of links and representation theory,” Osaka J. Math., 24, 745–758 (1987).MathSciNetMATHGoogle Scholar
  38. 38.
    P. P. Kulish, “On spin systems related to the Temperley–Lieb algebra,” J. Phys. A: Math. Gen., 36, L489–L493 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Military Institute (Engineering-Technical)Military Academy of Materiel and Technical SecuritySt. PetersburgRussia
  2. 2.St. Petersburg Department of Steklov Institute of Mathematics of Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations