Theoretical and Mathematical Physics

, Volume 190, Issue 2, pp 295–302 | Cite as

Field theory and anisotropy of a cubic ferromagnet near the Curie point

Article
  • 20 Downloads

Abstract

It is known that critical fluctuations can change the effective anisotropy of a cubic ferromagnet near the Curie point. If the crystal undergoes a phase transition into the orthorhombic phase and the initial anisotropy is not too strong, then the effective anisotropy acquires the universal value A* = v*/u* at Tc, where u* and v* are the coordinates of the cubic fixed point of the renormalization group equations in the scaling equation of state and expressions for nonlinear susceptibilities. Using the pseudo-ϵ-expansion method, we find the numerical value of the anisotropy parameter A at the critical point. Padé resummation of the six-loop pseudo-ϵ-expansions for u*, v*, and A* leads to the estimate A* = 0.13 ± 0.01, giving evidence that observation of anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is entirely possible.

Keywords

cubic model effective anisotropy renormalization group ϵ-expansion pseudo-ϵ-expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys. Rev. Lett., 28, 240–243 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Wallace, “Critical behaviour of anisotropic cubic systems,” J. Phys. C, 6, 1390–1404 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    I. J. Ketley and D. J. Wallace, “A modified epsilon expansion for a Hamiltonian with cubic point-group symmetry,” J. Phys. A: Math. Gen., 6, 1667–1678 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    I. F. Lyuksyutov and V. L. Pokrovskii, “First-order phase transitions in systems with cubic anisotropy,” JETP Lett., 21, 9–11 (1975).ADSGoogle Scholar
  5. 5.
    A. Aharony, “Critical behavior of anisotropic cubic systems,” Phys. Rev. B, 8, 4270–4273 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Sokolov, Soviet Phys. Solid State, 19, 433–440 (1977).Google Scholar
  7. 7.
    K. E. Newman and E. K. Riedel, “Cubic N-vector model and randomly dilute Ising model in general dimensions,” Phys. Rev. B, 25, 264–280 (1982); Erratum, 30, 2924.ADSCrossRefGoogle Scholar
  8. 8.
    M. Ferer, J. P. Van Dyke, and W. J. Camp, “Effect of a cubic crystal field on the critical behavior of a 3D model with Heisenberg exchange coupling: A high-temperature series investigation,” Phys. Rev. B, 23, 2367–2373 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    M. Tissier, D. Mouhanna, J. Vidal, and B. Delamotte, “Randomly dilute Ising model: A nonperturbative approach,” Phys. Rev. B, 65, 140402 (2002); arXiv:cond-mat/0109176v3 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    I. O. Maier and A. I. Sokolov, “On the critical behavior of cubic crytals under structural phase transitions [in Russian],” Izv. AN SSSR Ser. Fiz., 51, 2103–2106 (1987)Google Scholar
  11. 10a.
    I. O. Maier, A. I. Sokolov, “Is a cubic crystal ‘isotropic’ in the critical point?” Ferroelectrics Lett. Sect., 9, 95–98 (1988).Google Scholar
  12. 11.
    N. A. Shpot, “Critical behavior of the mn-component field model in three dimensions II. Three-loop results,” Phys. Lett. A, 142, 474–478 (1989).ADSCrossRefGoogle Scholar
  13. 12.
    I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, “Critical exponents for cubic and impure uniaxial crystals: Most accurate (ϕ) theoretical values,” Ferroelectrics, 95, 93–96 (1989).CrossRefGoogle Scholar
  14. 13.
    D. V. Pakhnin and A. I. Sokolov, “Five-loop renormalization-group expansions for the three-dimensional nvector cubic model and critical exponents for impure Ising systems,” Phys. Rev. B, 61, 15130–15135 (2000); arXiv:cond-mat/9912071v3 (1999).ADSCrossRefGoogle Scholar
  15. 14.
    J. M. Carmona, A. Pelissetto, and E. Vicari, “N-component Ginzburg–Landau Hamiltonian with cubic anisotropy: A six-loop study,” Phys. Rev. B, 61, 15136–15151 (2000); arXiv:cond-mat/9912115v2 (1999).ADSCrossRefGoogle Scholar
  16. 15.
    H. Kleinert and V. Schulte-Frohlinde, “Exact five-loop renormalization group functions of ϕ4-theory with O(N)-symmetric and cubic interactions: Critical exponents up to e5,” Phys. Lett. B, 342, 284–296 (1995); arXiv:condmat/9503038v1 (1995).ADSCrossRefGoogle Scholar
  17. 16.
    H. Kleinert and S. Thoms, “Large-order behavior of a two-coupling-constant ϕ4 theory with cubic anisotropy,” Phys. Rev. D, 52, 5926–5943 (1995); arXiv:hep-th/9508172v1 (1995).ADSCrossRefGoogle Scholar
  18. 17.
    H. Kleinert, S. Thoms, and V. Schulte-Frohlinde, “Stability of a three-dimensional cubic fixed point in the two-coupling-constant ϕ4 theory,” Phys. Rev. B, 56, 14428–14434 (1997); arXiv:quant-ph/9611050v1 (1996).ADSCrossRefGoogle Scholar
  19. 18.
    B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, “Five-loop \(\sqrt \varepsilon \)-expansion for random Ising model and marginal spin dimensionality for cubic systems,” Phys. Lett. A, 230, 105–110 (1997); arXiv:cond-mat/9803388v1 (1998).ADSCrossRefGoogle Scholar
  20. 19.
    R. Folk, Yu. Holovatch, and T. Yavors’kii, “Effective and asymptotic critical exponents of a weakly diluted quenched Ising model: Three-dimensional approach versus \(\sqrt \varepsilon \) expansion,” Phys. Rev. B, 61, 15114–15129 (2000); arXiv:cond-mat/9909121v2 (1999).ADSCrossRefGoogle Scholar
  21. 20.
    R. Folk, Yu. Holovatch, and T. Yavors’kii, “Pseudo-e expansion of six-loop renormalization-group functions of an anisotropic cubic model,” Phys. Rev. B, 62, 12195–12200 (2000); Erratum, 63, 189901; arXiv:cond-mat/0003216v2 (2000).ADSCrossRefGoogle Scholar
  22. 21.
    K. B. Varnashev, “Stability of a cubic fixed point in three dimensions: Critical exponents for generic N,” Phys. Rev. B, 61, 14660–14674 (2000); arXiv:cond-mat/9909087v4 (1999).ADSCrossRefGoogle Scholar
  23. 22.
    A. Pelissetto and E. Vicari, “Critical phenomena and renormalization-group theory,” Phys. Rep., 368, 549–727 (2002); arXiv:cond-mat/0012164v6 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 23.
    R. Guida and J. Zinn–Justin, “Critical exponents of the N-vector model,” J. Phys. A: Math. Gen., 31, 8103–8121 (1998); arXiv:cond-mat/9803240v3 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 24.
    D. V. Pakhnin and A. I. Sokolov, “Renormalization group and nonlinear susceptibilities of cubic ferromagnets at criticality,” Phys. Rev. B, 64, 094407 (2001); arXiv:cond-mat/0102368v3 (2001).ADSCrossRefGoogle Scholar
  26. 25.
    J. C. Le Guillou and J. Zinn-Justin, “Critical exponents from field theory,” Phys. Rev. B, 21, 3976–3998 (1980).ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 26.
    Yu. Holovatch, D. Ivaneiko, and B. Delamotte, “On the criticality of frustrated spin systems with noncollinear order,” J. Phys. A: Math. Gen., 37, 3569–3575 (2004); arXiv:cond-mat/0312260v1 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 27.
    A. I. Sokolov and M. A. Nikitina, “Pseudo-e expansion and renormalized coupling constants at criticality,” Phys. Rev. E, 89, 052127 (2014); arXiv:1402.3531v2 [cond-mat.stat-mech] (2014).ADSCrossRefGoogle Scholar
  29. 28.
    A. I. Sokolov and M. A. Nikitina, “Fisher exponent from pseudo-e expansion,” Phys. Rev. Es, 90, 012102 (2014); arXiv:1402.3894v2 [cond-mat.stat-mech] (2014).ADSCrossRefGoogle Scholar
  30. 29.
    M. A. Nikitina and A. I. Sokolov, “Critical exponents and the pseudo-e-expansion,” Theor. Math. Phys., 186, 192–204 (2016); arXiv:1602.08681v1 [cond-mat.stat-mech] (2016).CrossRefMATHGoogle Scholar
  31. 30.
    A. I. Sokolov and M. A. Nikitina, “Pseudo-expansion and critical exponents of superfluid helium,” Phys. A, 444, 177–181 (2016); arXiv:1402.4318v3 [cond-mat.stat-mech] (2014).CrossRefGoogle Scholar
  32. 31.
    P. Calabrese, E. V. Orlov, D. V. Pakhnin, and A. I. Sokolov, “Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization group approximation,” Phys. Rev. B, 70, 094425 (2004); arXiv:cond-mat/0405432v1 (2004).ADSCrossRefGoogle Scholar
  33. 32.
    P. Calabrese and P. Parruccini, “Harmonic crossover exponents in O(n) models with the pseudo-e expansion approach,” Phys. Rev. B, 71, 064416 (2005); arXiv:cond-mat/0411027v2 (2004).ADSCrossRefGoogle Scholar
  34. 33.
    A. I. Sokolov, “Pseudo-epsilon expansion and the two-dimensional Ising model,” Phys. Sol. State, 47, 2144–2147 (2005); arXiv:cond-mat/0510088v2 (2005).ADSCrossRefGoogle Scholar
  35. 34.
    A. I. Sokolov, “Phase transitions in two dimensions and multiloop renormalization group expansions,” Theor. Math. Phys., 176, 948–955 (2013).MathSciNetCrossRefMATHGoogle Scholar
  36. 35.
    M. A. Nikitina and A. I. Sokolov, “Critical exponents in two dimensions and pseudo-e expansion,” Phys. Rev. E, 89, 042146 (2014); arXiv:1312.1062v3 [cond-mat.stat-mech] (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. Petersburg, Staryi PetergofRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations