Advertisement

Theoretical and Mathematical Physics

, Volume 190, Issue 2, pp 204–216 | Cite as

Critical behavior of the O(n) ϕ 4 model with an antisymmetric tensor order parameter: Three-loop approximation

  • N. V. AntonovEmail author
  • M. V. Kompaniets
  • N. M. Lebedev
Article

Abstract

We consider the critical behavior of the O(n)-symmetric model of the ϕ 4 type with an antisymmetric tensor order parameter. According to a previous study of the one-loop approximation in the quantum field theory renormalization group, there is an IR-attractive fixed point in the model, and IR scaling with universal indices hence applies. Using a more specific analysis based on three-loop calculations of the renormalization-group functions and Borel conformal summation, we show that the IR behavior is in fact governed by another fixed point of the renormalization-group equations and the model therefore belongs to a different universality class than the one suggested by the simplest one-loop approximation. Nevertheless, the validity of the obtained results remains a subject for discussion.

Keywords

critical behavior tensor order parameter renormalization group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1 [in Russian], Nauka, Moscow (1976); English transl., Butterworth-Heinemann, Oxford (1980).Google Scholar
  2. 2.
    A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1982); English transl. prev. ed., Pergamon, Oxford (1979).Google Scholar
  3. 3.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Intl. Series Monogr. Phys., Vol. 77), Oxford Univ. Press, Oxford (1989).zbMATHGoogle Scholar
  4. 4.
    A. N. Vasil’ev, Quantum Field Renormalization-Group in Critical Behavior Theory and Stochastic Dynamics [in Russian], Petersburg Inst. Nucl. Phys., St. Petersburg (1998); English transl.: The Field Theoretic Renormalization-Group in Critical Behavior Theory and Stochastic Dynamics, Chapman and Hall/CRC, Boca Raton, Fla. (2004).Google Scholar
  5. 5.
    H. Kleinert and V. Schulte-Frohlinde, Critical Properties of f4-Theories, World Scientific, Singapore (2001).CrossRefzbMATHGoogle Scholar
  6. 6.
    V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Field-Theoretical and Numerical Methods of the Description of Critical Phenomena in Structurally Disordered Systems [in Russian], Omsk State Univ. Press, Omsk (2012).Google Scholar
  7. 7.
    R. K. P. Zia and D. J. Wallace, “Critical behaviour of the continuous n-component Potts model,” J. Phys. A: Math. Gen., 8, 1495–1507 (1975)ADSCrossRefGoogle Scholar
  8. 7a.
    R. G. Priest and T. C. Lubensky, “Critical properties of two tensor models with application to the percolation problem,” Phys. Rev. B, 13, 4159–4171 (1976); Erratum, 14, 5125 (1976).ADSCrossRefGoogle Scholar
  9. 8.
    A. L. Korzhenevskii and B. N. Shalaev, “Effect of fluctuations on the properties of the phase transition from a nematic liquid crystal to an isotropic liquid,” JETP, 49, 1094–1100 (1979).ADSGoogle Scholar
  10. 9.
    P. W. Anderson and W. F. Brinkman, “Anisotropic superfluidity in 3He: A possible interpretation of its stability as a spin-fluctuation effect,” Phys. Rev. Lett., 30, 1108–1111 (1973)ADSCrossRefGoogle Scholar
  11. 9a.
    W. F. Brinkman, J. Serene and P. W. Anderson, “Spin-fluctuation stabilization of anisotropic superfluid states,” Phys. Rev. A, 10, 2386–2394 (1974).ADSCrossRefGoogle Scholar
  12. 10.
    A. I. Sokolov, “Phase diagram of superfluid He3,” JETP, 51, 998–1005 (1980); “Thermodynamic potentials of the superfluid phases of helium-3 in the region of strong critical fluctuations,” JETP, 57, 798 (1983).ADSGoogle Scholar
  13. 11.
    J. A. Sauls and J. W Serene, Phys. Rev. D, 17, 1524–1528 (1978).ADSCrossRefGoogle Scholar
  14. 12.
    A. I. Sokolov, “Phase transitions in a superfluid neutron liquid,” JETP, 52, 575–576 (1980).ADSGoogle Scholar
  15. 13.
    M. V. Komarova, M. Yu. Nalimov, and J. Honkonen, Theor. Math. Phys., 176, 906–912 (2013).Google Scholar
  16. 14.
    N. V. Antonov, M. V. Kompaniets, and N. M. Lebedev, “Critical behaviour of the O(n)-f4 model with an antisymmetric tensor order parameter,” J. Phys. A: Math. Theor., 46, 405002 (2013).ADSCrossRefzbMATHGoogle Scholar
  17. 15.
    S. A. Brazovski and S. G. Dmitriev, “Phase transitions in cholesteric liquid crystals,” JETP, 42, 497–502 (1975)ADSGoogle Scholar
  18. 15a.
    S. A. Brazovski and V. M. Filev, “Critical phenomena in cholesteric liquid crystals,” JETP, 48, 497–573 (1978)Google Scholar
  19. 15b.
    H. Grebel, R. M. Hornreich, and S. Shtrikman, “Landau theory of cholesteric blue phases,” Phys. Rev. A, 28, 1114–1138 (1983); “Landau theory of cholesteric blue phases: The role of higher harmonics,” Phys. Rev. A, 30, 3264–3278 (1984)ADSCrossRefGoogle Scholar
  20. 15c.
    R. M. Hornreich and S. Shtrikman, “Some open questions in cholesteric blue phases,” Z. Phys. B, 68, 369–373 (1987).ADSCrossRefGoogle Scholar
  21. 16.
    V. A. Belyakov and V. E. Dmitrienko, “The blue phase of liquid crystals,” Sov. Phys. Usp., 28, 535–562 (1985).ADSCrossRefGoogle Scholar
  22. 17.
    Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry [in Russian], Nauka, Moscow (1984); English transl., Kluwer, Dordrecht (1990).CrossRefGoogle Scholar
  23. 18.
    M. T. Dove and S. A. T. Redfern, “Lattice simulation studies of the ferroelastic phase transitions in (Na,K)Al Si3O8 and (Sr,Ca)Al2Si2O8 feldspar solid solutions,” Am. Mineral., 82, 8–15 (1997)ADSCrossRefGoogle Scholar
  24. 18a.
    G. W. Watson and S. C. Parker, “Dynamical instabilities in a-quartz and a-berlinite: A mechanism for amorphization,” Phys. Rev. B, 52, 13306–13309 (1995).ADSCrossRefGoogle Scholar
  25. 19.
    S. V. Goryainov and N. N. Ovsyuk, “Twisting of a-quartz tetrahedra at pressures near the transition to the amorphous state,” JETP Lett., 69, 467–471; “Mechanism of the formation of a soft mode in ferroelastic phase transition,” JETP Lett., 73, 408–410 (2001).Google Scholar
  26. 20.
    G. A. Kalagov, M. V. Kompaniets, and M. Yu. Nalimov, “Renormalization-group investigation of a superconducting U(r)-phase transition using five loops calculations,” arXiv:1505.07360v1 [cond-mat.stat-mech] (2015).zbMATHGoogle Scholar
  27. 21.
    G. A. Kalagov, M. Yu. Nalimov, and M. V. Kompaniets, “Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations,” Theor. Math. Phys., 181, 1448–1458 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 22.
    C. M. Bender and T. Wu, “Anharmonic oscillator,” Phys. Rev., 184, 1231–1260 (1969).ADSMathSciNetCrossRefGoogle Scholar
  29. 23.
    A. G. Basuev and A. N. Vasil’ev, “Method of summing the perturbation series in scalar theories,” Theor. Math. Phys., 18, 129–135 (1974).MathSciNetCrossRefGoogle Scholar
  30. 24.
    L. N. Lipatov, “Divergence of the perturbation-theory series and the quasi-classical theory,” Soviet JETP, 45, 216–223 (1977).ADSMathSciNetGoogle Scholar
  31. 25.
    D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, “Analytic continuation of the results of perturbation theory for the model gf4 to the region g > 1,” Theor. Math. Phys., 38, 9–16 (1979).CrossRefGoogle Scholar
  32. 26.
    D. I. Kazakov and D. V. Shirkov, “Asymptotic series of quantum field theory and their summation,” Fortsch. Phys., 28, 465–499 (1980).ADSMathSciNetCrossRefGoogle Scholar
  33. 27.
    D. V. Shirkov, “Asymptotic series in quantum-field asymptotics,” Theor. Math. Phys., 40, 785–790 (1979).CrossRefGoogle Scholar
  34. 28.
    E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, “Perturbation theory at large order: I. The f2N interaction,” Phys. Rev. D, 15, 1544–1557 (1977).ADSCrossRefGoogle Scholar
  35. 29.
    J. C. Le Guillou and J. Zinn-Justin, “Critical exponents from field theory,” Phys. Rev. B, 21, 3976–3998 (1980).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 30.
    E. Brezin, J. C. Le Guillou, J. Zinn-Justin, and B. G. Nickel, “Higher order contributions to critical exponents,” Phys. Lett. A, 44, 227–228 (1973).ADSCrossRefGoogle Scholar
  37. 31.
    A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, “Calculation of critical exponents by quantum field theory methods,” Soviet JETP, 521–525 (1979).Google Scholar
  38. 32.
    A. A. Vladimirov, “On invariant regularization,” Theor. Math. Phys., 35, 534–538 (1978).CrossRefGoogle Scholar
  39. 33.
    A. A. Vladimirov, “Methods of calculating many-loop diagrams and renormalization-group analysis of the ?4 theory,” Theor. Math. Phys., 36, 732–737 (1978).MathSciNetCrossRefGoogle Scholar
  40. 34.
    A. A. Vladimirov, “Method of calculating renormalization-group functions in the scheme of dimensional regularization,” Theor. Math. Phys., 43, 417–422 (1980).CrossRefGoogle Scholar
  41. 35.
    K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachev, “Five-loop calculations in the gf4 model and the critical index ?,” Phys.Lett. B, 99, 147–150 (1981); Erratum, 101, 457–458 (1981).ADSMathSciNetCrossRefGoogle Scholar
  42. 36.
    K. G. Chetyrkin, S. G. Gorishny, S. A. Larin, and F. V. Tkachov, “Five-loop renormalization group calculations in the gf4 theory,” Phys. Lett. B, 132, 351–354 (1983)ADSCrossRefGoogle Scholar
  43. 36a.
    S. G. Gorishnii, S. A. Larin, F. V. Tkachev, and K. G. Chetyrkin, “Analytic calculation of five-loop approximations of renorm-group functions of the gf4(4) model in the MS scheme: Per diagram analysis [in Russian],” Preprint IYaI AN SSSR P-0453, Inst. Nucl. Res., Moscow (1986).Google Scholar
  44. 37.
    D. I. Kazakov, “The method of uniqueness, a new powerful technique for multiloop calculations,” Phys. Lett. B, 133, 406–410 (1983)ADSCrossRefGoogle Scholar
  45. 37a.
    D. I. Kazakov, “Calculation of Feynman diagrams by the “Uniqueness” method,” Theor. Math. Phys., 58, 223–230 (1984).CrossRefGoogle Scholar
  46. 38.
    H. Kleinert, J. Neu, V. Shulte-Frohlinde, K. G. Chetyrkin, and S. A. Larin, “Five-loop renormalization group functions of O(n)-symmetric f4 theory and expansions of critical exponents up to 5,” Phys. Lett. B, 272, 39–44 (1991); Erratum, 319, 545 (1993).ADSCrossRefGoogle Scholar
  47. 39.
    D. V. Batkovich, K. G. Chetyrkin, and M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent ? in O(n)-symmetric f4 model,” Nucl. Phys. B, 906, 147–167 (2016); arXiv:1601.01960v2 [hep-th] (2016).ADSCrossRefzbMATHGoogle Scholar
  48. 40.
    J. A. M. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025v2 (2000)Google Scholar
  49. 40a.
    J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, “FORM version 4.0,” Comp. Phys. Commun., 184, 1453–1467 (2013).ADSCrossRefzbMATHGoogle Scholar
  50. 41.
    M. V. Komarova and M. Yu. Nalimov, “Asymptotic behavior of renormalization constants in higher orders of the perturbation expansion for the (4−ε)-dimensional regularized O(n)-symmetric ϕ 4 theory,” Theor. Math. Phys., 126, 339–353 (2001).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Antonov
    • 1
    Email author
  • M. V. Kompaniets
    • 1
  • N. M. Lebedev
    • 1
  1. 1.Physics FacultySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations