Advertisement

Theoretical and Mathematical Physics

, Volume 189, Issue 3, pp 1742–1754 | Cite as

Holographic instant conformal symmetry breaking by colliding conical defects

  • D. S. Ageev
  • I. Ya. Aref’eva
Article

Abstract

We study instant conformal symmetry breaking as a holographic effect of ultrarelativistic particles moving in the AdS3 space–time. We give a qualitative picture of this effect based on calculating the two-point correlation functions and the entanglement entropy of the corresponding boundary theory. We show that in the geodesic approximation, because of gravitational lensing of the geodesics, the ultrarelativistic massless defect produces a zone structure for correlators with broken conformal invariance. At the same time, the holographic entanglement entropy also exhibits a transition to nonconformal behavior. Two colliding massless defects produce a more diverse zone structure for correlators and the entanglement entropy.

Keywords

AdS/CFT correspondence holography conical defect thermalization holographic entanglement entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ya. Aref’eva, D. S. Ageev, and M. D. Tikhanovskaya, Theor. Math. Phys., 189, 1660–1672 (2016); arXiv: 1512.03363v1 [hep-th] (2015).CrossRefGoogle Scholar
  2. 2.
    V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. Ya. Aref’eva and A. A. Bagrov, Theor. Math. Phys., 182, 1–22 (2015).CrossRefGoogle Scholar
  4. 4.
    V. Balasubramanian, B. D. Chowdhury, B. Czech, and J. de Boer, JHEP, 1501, 048 (2015); arXiv:1406.5859v2 [hep-th] (2014).ADSCrossRefGoogle Scholar
  5. 5.
    I. Arefeva, A. Bagrov, P. Saterskog, and K. Schalm, Phys. Rev. D, 94, 044059; arXiv:1508.04440v1 [hep-th] (2015).Google Scholar
  6. 6.
    S. Deser, R. Jackiw, and G.’t Hooft, Ann. Phys., 152, 220–235 (1984).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    G.’t Hooft, Class. Q. Grav., 13, 1023–1039 (1996); arXiv:gr-qc/9601014v1 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    H.-J. Matschull, Class. Q. Grav., 16, 1069–1095 (1999); arXiv:gr-qc/9809087v3 (1998).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Ryu and T. Takayanagi, Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Nishioka, S. Ryu, and T. Takayanagi, J. Phys. A: Math. Theor., 42, 504008 (2009); arXiv:0905.0932v2 [hep-th] (2009).CrossRefGoogle Scholar
  11. 11.
    C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman, JHEP, 1502, 171 (2015); arXiv:1410.1392v2 [hep-th] (2014).ADSCrossRefGoogle Scholar
  12. 12.
    M. Nozaki, T. Numasawa, and T. Takayanagi, JHEP, 1305, 080 (2013); arXiv:1302.5703v2 [hep-th] (2013).ADSCrossRefGoogle Scholar
  13. 13.
    D. Marolf, H. Maxfield, A. Peach, and S. F. Ross, Class. Q. Grav., 32, 215006; arXiv:1506.04128v2 [hep-th] (2015).Google Scholar
  14. 14.
    H. Casini, H. Liu, and M. Mezei, JHEP, 1607, 077 (2016); arXiv:1509.05044v1 [hep-th] (2015).ADSCrossRefGoogle Scholar
  15. 15.
    T. Hartman and N. Afkhami-Jeddi, “Speed limits for entanglement,” arXiv:1512.02695v1 [hep-th] (2015).Google Scholar
  16. 16.
    I. Ya. Aref’eva and M. A. Khramtsov, JHEP, 1604, 121 (2016); arXiv:1601.02008v2 [hep-th] (2016).ADSCrossRefGoogle Scholar
  17. 17.
    I. Aref’eva, AIP Conf. Proc., 1701, 090001 (2016).CrossRefGoogle Scholar
  18. 18.
    I. Ya. Aref’eva, Theor. Math. Phys., 184, 1239–1255 (2015).CrossRefGoogle Scholar
  19. 19.
    I. Aref’eva, EPJ Web Conf., 125, 01007 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Ageev, EPJ Web Conf., 125, 04007 (2016).CrossRefGoogle Scholar
  21. 21.
    I. Ya. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv:1603.09107v2 [hep-th] (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations