Theoretical and Mathematical Physics

, Volume 189, Issue 3, pp 1718–1725 | Cite as

Three-dimensional lattice of Bäcklund transformations of integrable cases of the Davey–Stewartson system



We construct a three-dimensional octahedral lattice of Bäcklund transformations of integrable cases of the Davey–Stewartson system. At the lattice sites, we arrange functions, which, on one hand, are used to define the dynamical variables of the Davey–Stewartson system and, on the other hand, are connected by bilinear relations of the Hirota type. One of the lattice equations is a purely discrete six-point equation that coincides with the famous Hirota equation.


Bäcklund transformation Davey–Stewartson system Hirota equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Davey and K. Stewartson, Proc. Roy. Soc. London Ser. A, 338, 10–110 (1974).CrossRefGoogle Scholar
  2. 2.
    V. A. Arkadiev, A. K Pogrebkov, and M. C. Polivalov, Phys. D, 36, 189–197 (1989).CrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Levi, L. Pilloni, and P. M. Santini, Phys. Lett. A, 81, 419–423 (1981).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Hisakado, J. Phys. Soc. Japan, 67, 3038–3043 (1998).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. N. Leznov, A. B. Shabat, and R. I. Yamilov, Phys. Lett. A, 174, 397–402 (1993).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. B. Leble, M. A. Salle, and A. V. Yurov, Inverse Problems, 8, 207–218 (1992).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Yurov, Theor. Math. Phys., 109, 1508–1514 (1996).CrossRefGoogle Scholar
  8. 8.
    J. Hietarinta and R. Hirota, Phys. Lett. A, 145, 237–244 (1990).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. R. Gilson and J. C. Nimmo, Theor. Math. Phys., 128, 870–882 (2001).CrossRefGoogle Scholar
  10. 10.
    M. Boiti, J. J.-P. Leon, L. Martina, and F. Pempinelli, Phys. Lett. A, 132, 432–439 (1988).ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. S. Fokas and P. M. Santini, Phys. D, 44, 99–130 (1990).CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Tajuri and T. Arai, “Periodic soliton solutions to the Davey–Stewartson equation,” in: Proc. Third Intl. Conf. “Symmetry in Nonlinear Mathematical Physics” (Math. Phys., Vol. 30, A. M. Samoilenko, ed.), Inst. Math. NAS Ukraine, Kiev (2000), pp. 210–217.Google Scholar
  13. 13.
    Z.-D. Dai and S.-L. Li, Acta Math. Appl. Sin. Engl. Ser., 24, 599–612 (2008).CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. B. Shabat and R. Yamilov, Phys. Lett. A, 227, 15–23 (1997).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. G. Marikhin, Theor. Math. Phys., 184, 953–960 (2015).CrossRefMathSciNetGoogle Scholar
  16. 16.
    V. G. Marikhin and A. B. Shabat, Theor. Math. Phys., 118, 173–182 (1999).CrossRefGoogle Scholar
  17. 17.
    S. N. M. Ruijsenaars, “Relativistic Toda system,” Preprint, Stichting Centre for Mathematics and Computer Sciences, Amsterdam (1986).Google Scholar
  18. 18.
    V. E. Adler and A. B. Shabat, Theor. Math. Phys., 111, 647–657 (1997).CrossRefGoogle Scholar
  19. 19.
    A. V. Zabrodin, Theor. Math. Phys., 113, 1347–1392 (1997).CrossRefGoogle Scholar
  20. 20.
    C. R. Gilson and J. J. C. Nimmo, J. Nonlinear Math. Phys., 12, 169–179 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    V. E. Vekslerchik, SIGMA, 9, 044 (2013).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovkaRussia

Personalised recommendations