Advertisement

Theoretical and Mathematical Physics

, Volume 189, Issue 1, pp 1450–1458 | Cite as

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

  • P. G. Grinevich
  • P. M. Santini
Article
  • 23 Downloads

Abstract

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form v t = v x v y - x -1 y [v y + v x 2], where the formal integral x −1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \) . We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

Keywords

dispersionless partial differential equation scattering transform Cauchy problem vector field Pavlov equation nonlocality tomography with an obstacle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Manakov and P. M. Santini, J. Phys.: Conf. Ser., 482, 012029; arXiv:1312.2740v1 [nlin.SI] (2013).ADSGoogle Scholar
  2. 2.
    S. V. Manakov and P. M. Santini, “Inverse scattering problem for vector fields and the heavenly equation,” arXiv:nlin/0512043v1 (2005).zbMATHGoogle Scholar
  3. 3.
    S. V. Manakov and P. M. Santini, Phys. Lett. A, 359, 613–619 (2006).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. V. Manakov and P. M. Santini, JETP Letters, 83, 462–466 (2006).CrossRefGoogle Scholar
  5. 5.
    S. V. Manakov and P. M. Santini, Theor. Math. Phys., 152, 1004–1011 (2007).MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. V. Manakov and P. M. Santini, J. Phys. A: Math. Theor., 41, 055204 (2008).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. V. Manakov and P. M. Santini, J. Phys. A: Math. Theor., 42, 095203 (2009).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. G. Grinevich, P. M. Santini, and D. Wu, Nonlinearity, 28, 3709–3754 (2015).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. V. Pavlov, J. Math. Phys., 44, 4134–4156 (2003).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. V. Ferapontov and K. R. Khusnutdinova, Commun. Math. Phys., 248, 187–206 (2004).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Dunajski, J. Geom. Phys., 51, 126–137 (2004).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Dunajski, “The nonlinear graviton as an integrable system,” Doctoral dissertation, Univ. of Oxford, Oxford (1998).Google Scholar
  13. 13.
    P. G. Grinevich and P. M. Santini, Stud. Appl. Math., 137, 10–27 (2016); arXiv:1507.08205v1 [nlin.SI] (2015).MathSciNetCrossRefGoogle Scholar
  14. 14.
    B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541 (1970).ADSGoogle Scholar
  15. 15.
    C. C. Lin, E. Reissner, and H. S. Tien, J. Math. Phys., 27, 220–231 (1948).CrossRefGoogle Scholar
  16. 16.
    R. Timman, “Unsteady motion in transonic flow,” in: Symposium Transsonicum (International Union of Theoretical and Applied Mechanics (IUTAM), Aachen, 3–7 September 1962, K. Oswatitsch, ed.), Springer, Berlin (1964), pp. 394–401.CrossRefGoogle Scholar
  17. 17.
    E. A. Zobolotskaya and R. V. Khokhlov, Soviet Physics Acoustics, 15, 35–40 (1969).Google Scholar
  18. 18.
    M. J. Ablowitz and J. Villarroel, Stud. Appl. Math., 85, 195–213 (1991).MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Boiti, F. Pempinelli, and A. Pogrebkov, Acta Appl. Math., 39, 175–192 (1995).MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. S. Fokas and L.-Y. Sung, Math. Proc. Cambridge Phil. Soc., 125, 113–138 (1999).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. M. Cormack, J. Appl. Phys., 34, 2722–2727 (1963).ADSCrossRefGoogle Scholar
  22. 22.
    F. Natterer, The Mathematics of Computerized Tomography (Classics Appl. Math., Vol. 32), SIAM, Philadelphia, Penn. (2001).CrossRefzbMATHGoogle Scholar
  23. 23.
    L. Sylow and S. Lie, eds., Oeuvres complètes de Niels Henrik Abel, Johnson Reprint Corp., New York (1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow OblastRussia
  4. 4.Dipartimento di FisicaUniversità di Roma “La Sapienza,”RomeItaly
  5. 5.Istituto Nazionale di Fisica NucleareSezione di RomaRomeItaly

Personalised recommendations