Advertisement

Theoretical and Mathematical Physics

, Volume 188, Issue 1, pp 1038–1068 | Cite as

(1+1)-Correlators and moving massive defects

  • D. S. Ageev
  • I. Ya. Aref’eva
  • M. D. Tikhanovskaya
Article

Abstract

We study correlation functions of scalar operators on the boundary of the AdS3 space deformed by moving massive particles in the context of the AdS/CFT duality. To calculate two-point correlation functions, we use the geodesic approximation and the renormalized image method, obtained from the traditional image method with the renormalization taken into account. We compare results obtained using the renormalized image method with direct calculations using tracing of winding geodesics around the cone singularities. Examples demonstrate that the results coincide. We show that correlators in the geodesic approximation have a zone structure, which depends substantially on the particle mass and velocity.

Keywords

AdS/CFT correspondence holographic duality conical defect thermalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Maldacena, Adv. Theor. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett B., 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Witten, Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Ya. Aref’eva, Phys. Usp., 57, 527–555 (2014).CrossRefGoogle Scholar
  5. 5.
    O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, Prog. Part. Nucl. Phys., 75, 86–132 (2014); arXiv: 1304.7794v2 [hep-th] (2013).ADSCrossRefGoogle Scholar
  6. 6.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).zbMATHGoogle Scholar
  7. 7.
    C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son, Phys. Rev. D, 75, 085020 (2007); arXiv:hep-th/0701036v2 (2007).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett., 101, 031601 (2008); arXiv:0803.3295v1 [hep-th] (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, JHEP, 0812, 015 (2008); arXiv:0810.1563v1 [hep-th] (2008).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D, 84, 026010 (2011); arXiv:1103.2683v1 [hep-th] (2011).ADSCrossRefGoogle Scholar
  11. 11.
    V. Balasubramanian, A. Bernamonti, B. Craps, V. Keränen, E. Keski-Vakkuri, B. Müller, L. Thorlacius, and J. Vanhoof, JHEP, 1304, 069 (2013); arXiv:1212.6066v2 [hep-th] (2012).ADSCrossRefGoogle Scholar
  12. 12.
    J. Aparício and E. López, JHEP, 1112, 082 (2011); arXiv:1109.3571v1 [hep-th] (2011).ADSCrossRefGoogle Scholar
  13. 13.
    V. Keränen, E. Keski-Vakkuri, and L. Thorlacius, Phys. Rev. D, 85, 026005 (2012); arXiv:1110.5035v2 [hep-th] (2011).ADSCrossRefGoogle Scholar
  14. 14.
    I. Y. Aref’eva, Theor. Math. Phys., 184, 1239–1256 (2015); arXiv:1503.02185v1 [hep-th] (2015).MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Ryu and T. Takayanagi, Phys. Rev. Lett., 96, 181602 (2006); arXiv:hep-th/0603001v2 (2006).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Ryu and T. Takayanagi, JHEP, 0608, 045 (2006); arXiv:hep-th/0605073v3 (2006).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Nishioka, S. Ryu, and T. Takayanagi, J. Phys. A: Math. Theor, 42, 504008 (2009); arXiv:0905.0932v2 [hep-th] (2009).MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Calabrese and J. L. Cardy, J. Stat. Mech., 0710, P10004 (2007); arXiv:0708.3750v2 [cond-mat.stat-mech] (2007).CrossRefGoogle Scholar
  19. 19.
    M. Nozaki, T. Numasawa, and T. Takayanagi, JHEP, 1305, 080 (2013); arXiv:1302.5703v2 [hep-th] (2013).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Deser, R. Jackiw, and G.’t Hooft, Ann. Phys., 152, 220–235 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    G. ’t Hooft, Class. Q. Grav., 13, 1023–1040 (1996); arXiv:gr-qc/9601014v1 (1996).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Deser and R. Jackiw, Commun. Math. Phys., 118, 495–509 (1988).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. S. Dowker, J. Phys. A: Math. Gen., 10, 115–124 (1977).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. O. Katanaev and I. V. Volovich, Ann. Phys., 216, 1–28 (1992).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    T. W. B. Kibble, J. Phys. A: Math. Gen, 9, 1387–1398 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    I. Kirsch, Fortsch. Phys., 52, 727–826 (2004); arXiv:hep-th/0406274v1 (2004).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C. A. B. Bayona, C. N. Ferreira, and V. J. Vasquez Otoya, Class. Q. Grav., 28, 015011 (2011); arXiv:1003.5396v3 [hep-th] (2010).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Ya. Aref’eva, “Colliding hadrons as cosmic membranes and possible signatures of lost momentum,” in: Cosmology, Quantum Vacuum, and Zeta Functions (Springer Proc. Phys., Vol. 137, S. D. Odintsov, D. Sáez-Gómez, and S. Xambó-Descamps, eds.), Springer, Berlin (2011), pp. 21–34; arXiv:1007.4777v1 [hep-th] (2010).CrossRefGoogle Scholar
  29. 29.
    V. Balasubramanian and S. F. Ross, Phys. Rev. D, 61, 044007 (2000); arXiv:hep-th/9906226v1 (1999).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Ya. Aref’eva and A. A. Bagrov, Theor. Math. Phys., 182, 1–22 (2015).MathSciNetCrossRefGoogle Scholar
  31. 31.
    V. Balasubramanian, A. Naqvi, and J. Simón, JHEP, 0408, 023 (2004); arXiv:hep-th/0311237v3 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    V. Balasubramanian, B. D. Chowdhury, B. Czech, and J. de Boer, JHEP, 1501, 048 (2015); arXiv:1406.5859v2 [hep-th] (2014).ADSCrossRefGoogle Scholar
  33. 33.
    I. Arefeva, A. Bagrov, P. Saterskog, and K. Schalm, “Holographic dual of a time machine,” arXiv:1508.04440v1 [hep-th] (2015).Google Scholar
  34. 34.
    M. Araújo, D. Areán, J. Erdmenger, and J. M. Lizana, JHEP, 1508, 146 (2015); arXiv:1505.05883v2 [hep-th] (2015).CrossRefGoogle Scholar
  35. 35.
    H.-J. Matschull, Class. Q. Grav., 16, 1069–1096 (1999); arXiv:gr-qc/9809087v3 (1998).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H.-J. Matschull and M. Welling, Class. Q. Grav., 15, 2981–3030 (1998); arXiv:gr-qc/9708054v2 (1997).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Ciafaloni, Nucl. Phys. B Proc. Suppl., 57, 323–325 (1997).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    K. Osterwalder and R. Schrader, Commun. Math. Phys., 31, 83–12 (1973); 42, 281–305 (1975).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Lüscher and G. Mack, Commun. Math. Phys., 41, 203–234 (1975).ADSCrossRefGoogle Scholar
  40. 40.
    R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer, Berlin (1992).CrossRefzbMATHGoogle Scholar
  41. 41.
    I. M. Gelfand and G. E. Shilov, Generalized Functions and Actions on Them [in Russian], Fizmatlit, Moscow (1959); English transl.: Generalized Functions, Vol. 1, Properties and Operations, Acad. Press, New York (1964).Google Scholar
  42. 42.
    K. Skenderis and B. C. van Rees, JHEP, 0905, 085 (2009); arXiv:0812.2909v2 [hep-th] (2008).ADSCrossRefGoogle Scholar
  43. 43.
    I. Ya. Aref’eva and M. A. Khramtsov, JHEP, 1604, 121 (2016); arXiv:1601.02008v2 [hep-th] (2016).ADSCrossRefGoogle Scholar
  44. 44.
    D. S. Ageev and I. Ya. Aref’eva, “Holographic dual to conical defects: II. Colliding ultrarelativistic particles,” arXiv:1512.03363v1 [hep-th] (2015).Google Scholar
  45. 45.
    Ya. Aref’eva, M. A. Khramtsov, and M. D. Tikhanovskaya, “Holographic dual to conical defects III: Improved image method,” arXiv:1604.08905v1 [hep-th] (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. S. Ageev
    • 1
  • I. Ya. Aref’eva
    • 1
  • M. D. Tikhanovskaya
    • 1
    • 2
  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations