Theoretical and Mathematical Physics

, Volume 187, Issue 3, pp 842–870 | Cite as

Set partitions and integrable hierarchies

  • V. E. Adler


We demonstrate that statistics for several types of set partitions are described by generating functions arising in the theory of integrable equations.


set partition B-type partition nonoverlapping partition atomic partition Bell polynomial Dowling number Bessel number generating function integrable hierarchy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Vershik, Funct. Anal. Appl., 30, 90–105 (1996).MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Deift, Notices Amer. Math. Soc., 47, 631–640 (2000).MathSciNetGoogle Scholar
  3. 3.
    M.-P. Grosset and A. P. Veselov, J. Nonl. Math. Phys., 12, 469–474 (2005).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Alexandrov, A. Mironov, A. Morozov, and S. Natanzon, J. Phys. A: Math. Theor., 45, 045209 (2012).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Lambert, I. Loris, J. Springael, and R. Willox, J. Phys. A: Math. Gen., 27, 5325–5334 (1994).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Lambert and J. Springael, Acta Appl. Math., 102, 147–178 (2008).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Pemmaraju and S. Skiena, Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambridge Univ., Cambridge (2003).CrossRefzbMATHGoogle Scholar
  8. 8.
    D. E. Knuth, The Art of Computer Programming, Vol. 4A, Combinatorial Algorithms: Part 1, Addison-Wesley, Reading, Mass. (2011).Google Scholar
  9. 9.
    T. Mansour, Combinatorics of Set Partitions, CRC Press, Boca Raton, Fla. (2013).zbMATHGoogle Scholar
  10. 10.
    L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht (1974).CrossRefzbMATHGoogle Scholar
  11. 11.
    W. P. Johnson, Amer. Math. Monthly, 109, 217–234 (2002).MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeisorg; Catalan n. A000108, A126120; Bell n. A000110; 2-Bell n. A005493; Bessel n. A006789; Dowling n. A007405; Stirling-2 n. A008277, A048993; Euler n. A008292; B-analogs of Stirling-2 n. A039755; of atomic partitions n. A074664; analogs of Stirling-2 for atomic partitions n. A087903; of 2-sparse nonoverlapping partitions n. A099950; expansion of [g(x)d/dx]ng(x) A145271 (2010).Google Scholar
  13. 13.
    N. H. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983); English transl.: Transformation Groups Applied to Mathematical Physics, D. Reidel, Dordrecht (1985).zbMATHGoogle Scholar
  14. 14.
    M. Bóna, Combinatorics of Permutations, CRC Press, Raton, Fla. (2004).CrossRefzbMATHGoogle Scholar
  15. 15.
    R. P. Stanley, Enumerative Combinatorics (Cambridge Stud. Adv. Math., Vol. 49), Vol. 1, Wadsworth and Brooks, Monterey, Calif. (1997).CrossRefzbMATHGoogle Scholar
  16. 16.
    T. A. Dowling, J. Combinatorial Theory Ser. B, 14, 61–86 (1973).MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Benoumhani, Discrete Math., 159, 13–33 (1996).MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. Reiner, Discrete Math., 177, 195–222 (1997).MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Suter, J. Integer Seq., 3, 00.1.8 (2000).MathSciNetGoogle Scholar
  20. 20.
    N. Kh. Ibragimov and A. B. Shabat, Funct. Anal. Appl., 14, 313–315 (1980).CrossRefGoogle Scholar
  21. 21.
    P. Flajolet, R. Schott, European J. Combin., 11, 421–432 (1990).MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Claesson, European J. Combin., 22, 961–971 (2001).MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Flajolet, Discrete Math., 32, 125–161 (1980).MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Klazar, J. Combin. Theory Ser. A, 102, 63–87 (2003).MathSciNetCrossRefGoogle Scholar
  25. 25.
    I. M. Gel’fand and L. A. Dikii, Russ. Math. Surveys, 30, 77–113 (1975).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Schimming, Acta Appl. Math., 39, 489–505 (1995).MathSciNetCrossRefGoogle Scholar
  27. 27.
    I. Avramidi and R. Schimming, Math. Nachr., 219, 45–64 (2000).MathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Polterovich, Lett. Math. Phys., 49, 71–77 (1999).MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Bergeron and M. Zabrocki, J. Algebra Appl., 8, 581–600 (2009).MathSciNetCrossRefGoogle Scholar
  30. 30.
    N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki, Canad. J. Math., 60, 266–296 (2008).MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. B. Can and B. E. Sagan, Electron. J. Combin., 18, P3 (2011).MathSciNetGoogle Scholar
  32. 32.
    W. Y. C. Chen, T. X. S. Li, and D. G. L. Wang, Electron. J. Combin., 18, P7 (2011).MathSciNetGoogle Scholar
  33. 33.
    B. A. Kupershmidt, Commun. Math. Phys., 99, 51–73 (1985).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Commun. Math. Phys., 115, 1–19 (1988).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovka, Moscow OblastRussia

Personalised recommendations