Advertisement

Theoretical and Mathematical Physics

, Volume 186, Issue 2, pp 156–182 | Cite as

Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach

  • V. B. MatveevEmail author
  • A. O. Smirnov
Article

Abstract

We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-2 quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.

Keywords

rogue wave freak wave nonlinear Schrödinger equation Hirota equation AKNS hierarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Its and V. P. Kotljarov, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 11, 965–968 (1976).MathSciNetGoogle Scholar
  2. 2.
    A. R. Its, Vestn. Leningr. Univ. Mat. Mekh. Astron., 7, 39–46 (1976).MathSciNetGoogle Scholar
  3. 3.
    E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer, Berlin (1994).zbMATHGoogle Scholar
  4. 4.
    A. O. Smirnov, Russian Acad. Sci. Sb. Math., 82, 461–470 (1995).MathSciNetGoogle Scholar
  5. 5.
    A. O. Smirnov, Theor. Math. Phys., 107, 568–578 (1996).CrossRefGoogle Scholar
  6. 6.
    A. O. Smirnov, Sb. Math., 188, 115–135 (1997).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. O. Smirnov, J. Math. Sci. (New York), 192, 117–125 (2013).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. O. Smirnov, Theor. Math. Phys., 173, 1403–1416 (2012).CrossRefGoogle Scholar
  9. 9.
    A. O. Smirnov, Math. Notes, 94, 897–907 (2013).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. O. Smirnov and G. M. Golovachev, Nelin. Dinam., 9, 389–407 (2013).CrossRefGoogle Scholar
  11. 11.
    A. O. Smirnov, E. G. Semenova, V. Zinger, and N. Zinger, “On a periodic solution of the focusing nonlinear Schrödinger equation,” arXiv:1407.7974v1 [math-ph] (2014).Google Scholar
  12. 12.
    A. O. Smirnov, S. G. Matveenko, S. K. Semenov, and E. G. Semenova, SIGMA, 11, 032 (2015); arXiv: 1412.1562v2 [math-ph] (2014).MathSciNetGoogle Scholar
  13. 13.
    A. R. Its and V. B. Matveev, J. Soviet Math., 23, 2412–2420 (1983).CrossRefGoogle Scholar
  14. 14.
    A. R. Its, A. V. Rybin, and M. A. Sall’, Theor. Math. Phys., 74, 20–32 (1988).MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. L. Alfimov, A. R. Its, and N. E. Kulagin, Theor. Math. Phys., 84, 787–793 (1990).MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A, 133, 483–488 (1988).CrossRefADSGoogle Scholar
  17. 17.
    K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys., 33, 1807–1816 (1992).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    M. Daniel, K. Porsezian, and M. Lakshmanan, Phys. Lett. A, 174, 237–240 (1993).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    R. Hirota, J. Math. Phys., 14, 805–809 (1973).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    C. Q. Dai and J. F. Zhang, J. Phys. A, 39, 723–737 (2006).MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, Phys. Rev. E, 81, 046602 (2010).MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    L. Li, Z. Wu, L. Wang, and J. He, Ann. Phys., 334, 198–211 (2013); arXiv:1304.7164v1 [nlin.SI] (2013).MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    C. Z. Li, J. S. He, and K. Porsezian, Phys. Rev. E, 87, 012913 (2013).CrossRefADSGoogle Scholar
  24. 24.
    L. H. Wang, K. Porsezian, and J. S. He, Phys. Rev. E, 87, 053202 (2013); arXiv:1304.8085v3 [nlin.SI] (2013).CrossRefADSGoogle Scholar
  25. 25.
    A. Ankiewicz and N. Akhmediev, Phys. Lett. A, 378, 358–361 (2014).MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    A. Chowdury, D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, Phys. Rev. E, 91, 022919 (2015).MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    A. Kundu, A. Mukherjee, and T. Naskar, Proc. R. Soc. London A, 470, 20130576 (2014).MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    G. P. Leclert, C. F. F. Karney, A. Bers, and D. J. Kaup, Phys. Fluids, 22, 1545–1553 (1979).CrossRefADSGoogle Scholar
  29. 29.
    X. Jukui and L. He, Phys. Plasmas, 10, 339–342 (2003).CrossRefADSGoogle Scholar
  30. 30.
    R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Plasmas, 15, 122310 (2008).CrossRefADSGoogle Scholar
  31. 31.
    R. Sabry, W. M. Moslem, P. K. Shukla, and H. Saleem, Phys. Rev. E, 79, 056402 (2009).CrossRefADSGoogle Scholar
  32. 32.
    R. Sabry, W. M. Moslem, and P. K. Shukla, Eur. Phys. J. D, 51, 233–240 (2009).CrossRefADSGoogle Scholar
  33. 33.
    R. Fedele, S. De Nicola, D. Jovanović, D. Grecu, and A. Visinescu, J. Plasma Phys., 76, 645–653 (2010).CrossRefADSGoogle Scholar
  34. 34.
    A. T. Grecu, S. De Nicola, R. Fedele, D. Grecu, and A. Visinescu, AIP Conf. Proc., 1203, 1239–1244 (2010).CrossRefADSGoogle Scholar
  35. 35.
    R. Fedele, A. Mannan, F. Tanjia, S. De Nicola, D. Jovanović, and L. Gianfrani, J. Plasma Phys., 79, 443–446 (2013).CrossRefADSGoogle Scholar
  36. 36.
    P. Dubard, P. Gaillard, C. Klein, and V. B. Matveev, Eur. Phys. J. Spec. Top., 185, 247–261 (2010).CrossRefGoogle Scholar
  37. 37.
    P. Dubard, “Multi-rogue solutions to the focusing NLS equation,” Doctoral dissertation, https://telarchivesouvertes. fr/tel-00625446/document, Université de Bourgogne, Dijon, France (2010).Google Scholar
  38. 38.
    P. Dubard and V. B. Matveev, Nat. Hazards Earth Syst. Sci., 11, 667–672 (2011).CrossRefADSGoogle Scholar
  39. 39.
    P. Dubard and V. B. Matveev, Nonlinearity, 26, R93–R125 (2013).MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    V. B. Matveev, P. Dubard, and A. O. Smirnov, Nelin. Dinam., 11, 219–240 (2015).CrossRefGoogle Scholar
  41. 41.
    B. Konopelchenko, J. Sidorenko, and W. Strampp, Phys. Lett. A, 157, 17–21 (1991).MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Y. Cheng and Y.-S. Li, Phys. Lett. A, 157, 22–26 (1991).MathSciNetCrossRefADSGoogle Scholar
  43. 43.
    R. S. Johnson, J. Fluid Mech., 97, 701–719 (1980).MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    V. D. Lipovskii, V. B. Matveev, and A. O. Smirnov, Zap. Nauchn. Sem. LOMI, 150, 70–75 (1986).Google Scholar
  45. 45.
    C. Klein, V. B. Matveev, and A. O. Smirnov, Theor. Math. Phys., 152, 1132–1145 (2007).MathSciNetCrossRefGoogle Scholar
  46. 46.
    K. R. Khusnutdinova, C. Klein, V. B. Matveev, and A. O. Smirnov, Chaos, 23, 013126 (2013).MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    V. M. Eleonskii, I. M. Krichever, and N. E. Kulagin, Sov. Phys. Dokl., 31, 226–228.Google Scholar
  48. 48.
    D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25, 16–43 (1983).MathSciNetCrossRefGoogle Scholar
  49. 49.
    A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Intl. Geophys.Series, Vol. 97), Acad. Press, Boston, Mass. (2010).zbMATHGoogle Scholar
  50. 50.
    E. A. Kuznetsov, Sov. Phys. Dokl., 22, 507–508 (1977).ADSGoogle Scholar
  51. 51.
    Y.-C. Ma, Stud. Appl. Math., 60, 43–58 (1979).MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys., 69, 1089–1093 (1986).MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Tajiri and Y. Watanabe, Phys. Rev. E, 57, 3510–3519 (1998).MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970); English transl. (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.St. Petersburg State University for Aerospace Instrumentation (SUAI)St. PetersburgRussia
  2. 2.Institut de Mathématiques de BourgogneUniversité de Bourgogne-Franche ComtéDijonFrance

Personalised recommendations