Advertisement

Solar System Research

, Volume 53, Issue 4, pp 294–305 | Cite as

Conjugated Gaussian Random Particle Model and Its Applications for Interpreting Cometary Polarimetric Observations

  • D. V. PetrovEmail author
  • N. N. Kiselev
Article

Abstract

This article presents a model of conjugated Gaussian random particles, which are convenient for simulation of irregular particles that constitute cometary dust. Computer simulation is conducted for the polarimetric properties of these particles; phase dependences are calculated for the linear polarization degree. The calculated results are used to interpret cometary polarimetric observations and determine possible physical and chemical characteristics of comets as well as the variation range within which the model adequately describes the observed data. The model calculations are used to refine the empirical formula that describes the phase dependence of the linear polarization degree for the cometary continuum.

Keywords:

comets polarimetry polarization phase dependence Gaussian random particles shape matrices computer simulation 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research and by the Republic of Crimea, project no. 18-42-910019\18.

REFERENCES

  1. 1.
    Bertaux, J.-L. and Lallement, R., Diffuse interstellar bands carriers and cometary organic material, Mon. Not. R. Astron. Soc., 2017, vol. 469, suppl. 2, pp. S646–S660.CrossRefGoogle Scholar
  2. 2.
    Bertini, I., Thomas, N., and Barbieri, C., Modeling of the light scattering properties of cometary dust using fractal aggregates, Astron. Astrophys., 2007, vol. 461, no. 1, pp. 351–364.ADSCrossRefGoogle Scholar
  3. 3.
    Compilation of comet polarimetry from published and unpublished sources, in NASA Planetary Data System, Kiselev, N., Shubina, E., Velichko, S., Jockers, K., Rosenbush, V., and Kikuchi, S., Eds., Washington, DC: Natl. Aeronaut. Space Admin., 2017, no. pds:compil-comet:polarimetry.1.0. https://pdssbn.astro.umd.edu/holdings/pds4-compil-comet:polarimetry-v1.0/SUPPORT/dataset.html.Google Scholar
  4. 4.
    Dobrovol’skii, O.V., Komety (Comets), Moscow: Nauka, 1966.Google Scholar
  5. 5.
    Dorschner, J., Begemann, B., Henning, T., Jäger, C., and Mutschke, H., Steps toward interstellar silicate mineralogy. II. Study of Mg–Fe-silicate glasses of variable composition, Astron. Astrophys., 1995, vol. 300, pp. 503–520.ADSGoogle Scholar
  6. 6.
    Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W.J., Leon, J.-F., Sorokin, M., and Slutsker, I., Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res.: Atmos., 2006, vol. 111, art. ID D11208.ADSCrossRefGoogle Scholar
  7. 7.
    Grynko, Ye. and Shkuratov, Yu., Scattering matrix for semitransparent particles of different shapes in geometric optics approximation, J. Quant. Spectrosc. Rad. Transf., 2003, vol. 78, nos. 3–4, pp. 319–340.ADSCrossRefGoogle Scholar
  8. 8.
    Grynko, Y., Shkuratov, Y., and Förstner, J., Light scattering by randomly irregular dielectric particles larger than the wavelength, Opt. Lett., 2013, vol. 38, no. 23, pp. 5153–5156ADSCrossRefGoogle Scholar
  9. 9.
    Grynko, Y., Shkuratov, Y., and Förstner, J., Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness, Opt. Lett., 2016, vol. 41, no. 15, pp. 3491–3494.  https://doi.org/10.1364/OL.41.003491 ADSCrossRefGoogle Scholar
  10. 10.
    Jenniskens, P., Optical constants of organic refractory residue, Astron. Astrophys., 1993, vol. 274, pp. 653–661.ADSGoogle Scholar
  11. 11.
    Kearsley, A.T., Borg, J., Graham, G.A., Burchell, M.J., Cole, H., Leroux, J.C., Bridges, F., Hörz, P.J., Wozniakiewicz, P.A., Bland, J.P., Bradley, Z.R., Dai, N., Teslich, T., See, P., Hoppe, P.R., et al., Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils, Meteor. Planet. Sci., 2008, vol. 43, pp. 41–73.ADSCrossRefGoogle Scholar
  12. 12.
    Kimura, H., Kolokolova, L., and Mann, I., Optical properties of cometary dust: constraints from numerical studies on light scattering by aggregate particles, Astron. Astrophys., 2003, vol. 407, no. 1, pp. L5–L8.ADSCrossRefGoogle Scholar
  13. 13.
    Kiselev, N.N., Rosenbush, V.K., Levasseur-Regourd, A.-Ch., and Kolokolova, L., Comets, in Polarimetry of Stars and Planetary Systems, Kolokolova, L., Hough, J., Levasseur-Regourd, A.-Ch., Eds., Cambridge: Cambridge Univ. Press, 2015, pp. 379–404.Google Scholar
  14. 14.
    Kolokolova, L., Kimura, H., and Mann, I., Characterization of dust particles using photopolarimetric data: example of cometary dust, in Photopolarimetry in Remote Sensing, Videen, G., Yatskiv, Ya., and Mishchenko, M., Eds., Dordrecht: Springer-Verlag, 2005, pp. 431–454.Google Scholar
  15. 15.
    Kolokolova, L., Kimura, H., Kiselev, N., and Rosenbush, V., Polarimetric and infrared evidence of two types of dust in comets, Astron. Astrophys., 2007, vol. 463, pp. 1189–1196.ADSCrossRefGoogle Scholar
  16. 16.
    Kolokolova, L., Das, H., Dubovik, O., Lapyonok, T., and Yang, P., Polarization of cosmic dust simulated with the rough spheroid model, Planet. Space Sci., 2015, vol. 116, pp. 30–38.ADSCrossRefGoogle Scholar
  17. 17.
    Lasue, J., Levasseur-Regourd, A.C., Hadamcik, E., and Alcouffe, G., Cometary dust properties retrieved from polarization observations: application to C/1995 O1 Hale–Bopp and 1P/Halley, Icarus, 2009, vol. 199, no. 1, pp. 129–144.ADSCrossRefGoogle Scholar
  18. 18.
    Le Borgne, J.F., Leroy, J.L., and Arnaud, J., Polarimetry of visible and near-UV molecular bands: Comet P/Halley and Hartley–Good, Astron. Astrophys., 1987, vol. 173, pp. 180–182.ADSGoogle Scholar
  19. 19.
    Li, A. and Greenberg, J.M., From interstellar dust to comets: infrared emission from comet Hale–Bopp (C/1995 O1), Astrophys. J., 1998, vol. 498, pp. L83–L87.ADSCrossRefGoogle Scholar
  20. 20.
    Lumme, K. and Muinonen, K., A two-parameter system for linear polarization of some Solar System objects, Proc. 160th Symp. of the International Astronomical Union “Asteroids, Comets, Meteors,” LPI Contribution vol. 810, New York: Springer-Verlag, 1993, pp. 194–197.Google Scholar
  21. 21.
    Lumme, K. and Penttilä, A., Model of light scattering by dust particles in the solar system: applications to cometary comae and planetary regoliths, J. Quant. Spectrosc. Radiat. Transf., 2011, vol. 112, no. 11, pp. 1658–1670.ADSCrossRefGoogle Scholar
  22. 22.
    Merouane, S., Zaprudin, B., Stenzel, O., Langevin, Y., Altobelli, N., Della Corte, V., Fischer, H., Fulle, M., Hornung, K., Silén, J., Ligier, N., Rotundi, A., Ryno, J., Schulz, R., Hilchenbach, M., Kissel, J., et al., Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta, Astron. Astrophys., 2016, vol. 596, p. A87.ADSCrossRefGoogle Scholar
  23. 23.
    Mishchenko, M.I. and Travis, L.D., Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation, Appl. Opt., 1994, vol. 33, no. 30, pp. 7206–7225.ADSCrossRefGoogle Scholar
  24. 24.
    Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., T-matrix computations of light scattering by nonspherical particles: a review, J. Quant. Spectrosc. Radiat. Transf., 1996, vol. 55, no. 5, pp. 535–575.ADSCrossRefGoogle Scholar
  25. 25.
    Mishchenko, M.I., Travis, L.D., Kahn, R.A., and West, R.A., Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res.: Atmos., 1997, vol. 102, no. 14, pp. 16 831–16 847.ADSCrossRefGoogle Scholar
  26. 26.
    Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge Univ. Press, 2002.Google Scholar
  27. 27.
    Muinonen, K., Light scattering by Gaussian random particles, Earth, Moon, Planets, 1996, vol. 72, pp. 339–342.ADSCrossRefGoogle Scholar
  28. 28.
    Muinonen, K., Introducing the Gaussian shape hypothesis for asteroids and comets, Astron. Astrophys., 1998, vol. 332, pp. 1087–1098.ADSGoogle Scholar
  29. 29.
    Muinonen, K. and Saarinen, K., Ray optics approximation for Gaussian random cylinders, J. Quant. Spectrosc. Radiat. Transf., 2000, vol. 64, no. 2, pp. 201–218.ADSCrossRefGoogle Scholar
  30. 30.
    Muinonen, K., Zubko, E., Tyynelä, J., Shkuratov, Yu.G., and Videen, G., Light scattering by Gaussian random particles with discrete-dipole approximation, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, pp. 360–377.ADSCrossRefGoogle Scholar
  31. 31.
    Moreno, F., Muñoz, O., Guirado, D., and Vilaplana, R., Comet dust as a size distribution of irregularly shaped, compact particles, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, no. 1, pp. 348–359.ADSCrossRefGoogle Scholar
  32. 32.
    Öhman, Y., Measurements of polarization in the spectra of comet Gunningham (1940 C) and comet Paraskevopoulos (1941 C), Stockholms Obs. Ann., 1941, vol. 13, no. 11, pp. 11.1–11.20.Google Scholar
  33. 33.
    Petrov, D., Synelnyk, E., Shkuratov, Yu., and Videen, G., The T-matrix technique for calculations of scattering properties of ensembles of randomly oriented particles with different size, J. Quant. Spectrosc. Radiat. Transf., 2006, vol. 102, pp. 85–110.ADSCrossRefGoogle Scholar
  34. 34.
    Petrov, D., Shkuratov, Yu., and Videen, G., Electromagnetic wave scattering from particles of arbitrary shapes, J. Quant. Spectrosc. Radiat. Transf., 2011, vol. 112, no. 11, pp. 1636–1645.ADSCrossRefGoogle Scholar
  35. 35.
    Petrov, D., Shkuratov, Yu., and Videen, G., Light scattering by arbitrary shaped particles with rough surfaces: Sh-matrices approach, J. Quant. Spectrosc. Radiat. Transf., 2012, vol. 113, pp. 2406–2418.ADSCrossRefGoogle Scholar
  36. 36.
    Petrova, E.V., Jockers, K., and Kiselev, N.N., Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust, Icarus, 2008, vol. 148, no. 2, pp. 526–536.ADSCrossRefGoogle Scholar
  37. 37.
    Rietmeijer, F.J.M., Nakamura, T., Tsuchiyama, A., Uesugi, K., Nakano, T., and Leroux, H., Origin and formation of iron silicide phases in the aerogel of the Stardust mission, Meteor. Planet. Sci., 2008, vol. 43, no. 1, pp. 121–134.ADSCrossRefGoogle Scholar
  38. 38.
    Shen, Y., Draine, B.T., and Johnson, E.T., Modeling porous dust grains with ballistic aggregates. II. Light scattering properties, Astrophys. J., 2009, vol. 696, no. 2, pp. 2126.ADSCrossRefGoogle Scholar
  39. 39.
    Shul’man, L.M., Dinamika kometnykh atmosfer. Neitral’nyi gaz (Dynamics of Comet Atmosphere. Neutral Gas), Kiev: Naukova Dumka, 1972.Google Scholar
  40. 40.
    Stankevich, D., Shkuratov, Yu., Grynko, E., and Muinonen, K., Computer simulation of multiple scattering in random Gaussian media, J. Quant. Spectrosc. Radiat. Transf., 2003, vol. 76, no. 1, pp. 1–16.ADSCrossRefGoogle Scholar
  41. 41.
    Stoyan, D. and Stoyan, H., Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics, Chichester: Wiley, 1994.zbMATHGoogle Scholar
  42. 42.
    Voshchinnikov, N.V. and Das, H.K., Modeling interstellar extinction and polarization with spheroidal grains, J. Quant. Spectrosc. Radiat. Transf., 2008, vol. 109, no. 8, pp. 1527–1535.ADSCrossRefGoogle Scholar
  43. 43.
    Waterman, P.C., Numerical solution of electromagnetic scattering problems, in Computer Techniques for Electromagnetics, Oxford: Pergamon, 1973, pp. 97–157.Google Scholar
  44. 44.
    Warren, S.G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 1984, vol. 23, no. 8, pp. 1206–1225.ADSCrossRefGoogle Scholar
  45. 45.
    Zubko, E., Light scattering by cometary dust: Large-particle contribution, Earth, Planets Space, 2013, vol. 65, pp. 139–148.  https://doi.org/10.5047/eps.2012.02.003 ADSCrossRefGoogle Scholar
  46. 46.
    Zubko, E., Petrov, D., Shkuratov, Y., and Videen, G., Discrete dipole approximation simulations of scattering by particles with hierarchical structure, Appl. Opt., 2005, vol. 44, pp. 6479–6485.ADSCrossRefGoogle Scholar
  47. 47.
    Zubko, E., Shkuratov, Y., Kiselev, N., and Videen, G., DDA simulations of light scattering by small irregular particles with various structure, J. Quant. Spectrosc. Radiat. Transf., 2006, vol. 101, no. 3, pp. 416–434.  https://doi.org/10.1016/j.jqsrt.2006.02.055 ADSCrossRefGoogle Scholar
  48. 48.
    Zubko, E., Muinonen, K., Shkuratov, Yu.G., Videen, G., and Nousiainen, T., Scattering of light by roughened Gaussian random particles, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, pp. 604–615.ADSCrossRefGoogle Scholar
  49. 49.
    Zubko, E., Muinonen, K., Shkuratov, Yu., Hadamcik, E., Levasseur-Regourd, A.-C., and Videen, G., Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2, Astron. Astrophys., 2012, vol. 544, p. L8.ADSCrossRefGoogle Scholar
  50. 50.
    Zubko, E., Muinonen, K., Videen, G., and Kiselev, N., Dust in comet C/1975 V1 (West), Mon. Not. R. Astron. Soc., 2014, vol. 440, pp. 2928–2943.ADSCrossRefGoogle Scholar
  51. 51.
    Zubko, E., Videen, G., Hines, D., Shkuratov, Y., Kaydash K., Muinonen, K., Knight M., Sitko M., Lisse C., Mutchler M., Li J.-Y., and Kobayashi H., Comet C/2012 S1 (ISON) coma composition at ~4 AU from HST observations, Planet. Space Sci., 2015, vol. 118, pp. 138–163.  https://doi.org/10.1016/j.pss.2015.08.002 ADSCrossRefGoogle Scholar
  52. 52.
    Zubko, E., Videen, G., Hines, D., and Shkuratov, Y., The positive-polarization of cometary comae, Planet. Space Sci., 2016, vol. 123, pp. 63–76.ADSCrossRefGoogle Scholar
  53. 53.
    Zubko, E., Videen, G., Shkuratov, Y., and Hines, D., On the reflectance of dust in comets, J. Quant. Spectrosc. Radiat. Transf., 2017, vol. 202, pp. 104–113.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Crimean Astrophysical Observatory, Russian Academy of SciencesCrimeaRussia

Personalised recommendations