Advertisement

Solar System Research

, Volume 53, Issue 4, pp 261–277 | Cite as

Confirmation of the Sublimation Activity of the Primitive Main-Belt Asteroids 779 Nina, 704 Interamnia, and 145 Adeona, as well as its Probable Spectral Signs on 51 Nemausa and 65 Cybele

  • V. V. BusarevEmail author
  • M. P. Shcherbina
  • S. I. Barabanov
  • T. R. Irsmambetova
  • G. I. Kokhirova
  • U. Kh. Khamroev
  • I. M. Khamitov
  • I. F. Bikmaev
  • R. I. Gumerov
  • E. N. Irtuganov
  • S. S. Mel’nikov
Article

Abstract

This paper presents the results that confirm the sublimation activity at the perihelion of the primitive main-belt asteroids 779 Nina, 704 Interamnia, and 145 Adeona; this activity was first discovered in September 2012 (Busarev et al., 2015; Busarev et al., 2016). The new spectrophotometric and/or UBVRI photometric observations of Nina, Interamnia, and Adeona were carried out in 2016–2018 during a regular perihelion passage of these asteroids. Additionally, probable spectral signs of weak sublimation activity were discovered on another two primitive main-belt asteroids, 51 Nemausa and 65 Cybele. In this study, we discuss the conditions for the occurrence of a periodic and/or continuous sublimation process on main-belt asteroids with low-temperature mineralogy; in particular, the conditions that are associated with their formation close to the “snow line” or beyond. We also consider general evolution processes that are able sustain a sufficiently high concentration of water ice close to the surface of the bodies in question and, therefore, their continuous sublimation activity, or lead to the recurrence of extinct activity.

Keywords:

primitive-type asteroids spectrophotometry chemical-mineral composition of matter ice sublimation solar activity 

Notes

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments, which allowed us to considerably improve the description and interpretation of the results.

FUNDING

The study is funded by the Russian Foundation for Basic Research (project no. 18-02-00105 A). I. Kh., I. B., R. G., E. I., and S. M. would like to thank TÜBİTAK, KFU, AS RT, and SRI for partial support in the use of the RTT150 (Russian–Turkish 1.5-m telescope in Antalya). The study was also funded in part by the subsidy 3.6714.2017/8.9 granted to the Kazan Federal University for performing the state task in the field of scientific activity.

REFERENCES

  1. 1.
    Bakhtin, A.I., Porodoobrazuyushchie silikaty: opticheskie spektry, kristallokhimiya, zakonomernosti okraski, tipomorfizm (Rock-Forming Silicates: Optical Spectra, Crystal Chemistry, Regularities of Coloring, and Typomorphism), Kazan: Kazan. Gos. Univ., 1985.Google Scholar
  2. 2.
    Bell, J.F., Davis, D.R., Hartmann, W.K., and Gaffey, M.J., Asteroids: the big picture, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 98–127.Google Scholar
  3. 3.
    Broglia, P. and Manara, A., Polarimetric observations of 51 Nemausa during its 1991 apparition, Astron. Astrophys., 1994, vol. 281, pp. 576–578.ADSGoogle Scholar
  4. 4.
    Burns, R.G., Mineralogical Applications of Crystal Field Theory, New York: Cambridge Univ. Press, 1993.CrossRefGoogle Scholar
  5. 5.
    Bus, S.J. and Binzel, R.P., Phase II of the small Main-belt asteroid spectroscopic survey. A feature-based taxonomy, Icarus, 2002, vol. 158, pp. 146–177.ADSCrossRefGoogle Scholar
  6. 6.
    Bus, S. and Binzel, R.P., 779 Nina CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003a, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 779_01_TAB.Google Scholar
  7. 7.
    Bus, S. and Binzel, R.P., 704 Interamnia CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003b, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 704_01_TAB.Google Scholar
  8. 8.
    Bus, S. and Binzel, R.P., 145 Adeona CCD spectrum, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2003c, no. EAR-A-I0028-4-SBN0001/SMASSII-V1.0: 145_01_TAB.Google Scholar
  9. 9.
    Busarev, V.V., Spectrophotometry of atmosphereless celestial bodies of the solar system, Sol. Syst. Res., 1999, vol. 33, no. 2, pp. 120–129.ADSGoogle Scholar
  10. 10.
    Busarev, V.V., Spektrofotometriya asteroidov i ee prilozheniya (Spectrophotometry of Asteroids and Its Application), Saarbrucken: LAP LAMBERT Academic, 2011.Google Scholar
  11. 11.
    Busarev, V.V., A hypothesis on the origin of C-type asteroids and carbonaceous chondrites, Proc. Asteroids, Comets, Meteors Meeting (ACM2012), Niigata, Paris: Eur. Space Agency, 2012, no. 6017. https://arxiv.org/ftp/arxiv/papers/1211/1211.3042.pdf.Google Scholar
  12. 12.
    Busarev, V.V., Barabanov, S.I., Rusakov, V.S., Puzin, V.B., and Kravtsov, V.V., Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples, Icarus, 2015, vol. 262, pp. 44–57.ADSCrossRefGoogle Scholar
  13. 13.
    Busarev, V.V., Barabanov, S.I., and Puzin, V.B., Material composition assessment and discovering sublimation activity on asteroids 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira, Sol. Syst. Res., 2016, vol. 50, no. 4, pp. 281–293.ADSCrossRefGoogle Scholar
  14. 14.
    Busarev, V.V., Makalkin, A.B., Vilas, F., Barabanov, S.I., and Scherbina, M.P., New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu, Icarus, 2018, vol. 304, pp. 83–94.ADSCrossRefGoogle Scholar
  15. 15.
    Ciarniello, M., De Sanctis, M.C., Ammannito, E., et al., Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission, Astron. Astrophys., 2017, vol. 598, art. ID A130.CrossRefGoogle Scholar
  16. 16.
    Davidsson, B.J.R., Sierks, H., Guttler, C., et al., The primordial nucleus of comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 2016, vol. 592, art. ID A63.CrossRefGoogle Scholar
  17. 17.
    Dermott, S.F., Nicholson, P.D., Burns, J.A., and Houck, J.R., Origin of the Solar System dust bands discovered by IRAS, Nature, 1984, vol. 312, pp. 505–509.ADSCrossRefGoogle Scholar
  18. 18.
    Dodd, R.T., Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge: Cambridge Univ. Press, 1981.Google Scholar
  19. 19.
    Durda, D.D. and Dermott, S.F., The collisional evolution of the Asteroid belt and its contribution to the zodiacal cloud, Icarus, 1997, vol. 130, pp. 140–164.ADSCrossRefGoogle Scholar
  20. 20.
    Franco, L. and Pilcher, F., Light-curve inversion for 65 Cybele, Minor Planet Bull., 2015, no. 42, pp. 204–206.Google Scholar
  21. 21.
    Gaffey, M.J., Bell, J.F., and Cruikshank, D.P., Reflectance spectroscopy and asteroid surface mineralogy, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 98–127.Google Scholar
  22. 22.
    Galazutdinov, G.A., A system for processing stellar Echelle spectra. II. Spectra processing, Preprint of the Special Astrophysical Observatory, Russ. Acad. Sci., Nizhnij Arkhyz, 1992, no. 92, pp. 27–52.Google Scholar
  23. 23.
    Gammelgaard, P., Significant color variation of (51) Nemausa, Proc. 30th Liège International Astrophysical Colloquium, Liège: Univ. Liège Press, 1992, pp. 311–313.Google Scholar
  24. 24.
    Gopalswamy, N., Yashiro, S., Thakur, N., Mäkelä, P., Xie, H., and Akiyama, S., The 2012 July 23 backside eruption: An extreme energetic particle event? Astrophys. J., 2016, vol. 833, pp. 216–235.ADSCrossRefGoogle Scholar
  25. 25.
    Grün, E., Agarwal, J., Altobelli, N., et al., The 19 Feb. 2016 outburst of Comet 67P/CG: An ESA Rosetta multi-instrument study, Mon. Not. R. Astron. Soc., 2016, vol. 462, suppl. 1, pp. S220–S234.CrossRefGoogle Scholar
  26. 26.
    Guilbert-Lepoutre, A., Besse, S., Mousis, O., Ali-Dib, M., Höfner, S., Koschny, D., and Hager, P., On the evolution of comets, Space Sci. Rev., 2015, vol. 197, pp. 271–296.ADSCrossRefGoogle Scholar
  27. 27.
    Gumerov, R.I., Khamitov, I.M., and Pinigin, G.I., Use of PTT150 telescope in international projects to study the small bodies of the Solar System, Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 2013, vol. 155, no. 1, pp. 164–177.Google Scholar
  28. 28.
    Hansen, J.E. and Travis, L.D., Light scattering in planetary atmosphere, Space Sci. Rev., 1974, vol. 16, pp. 527–610.ADSCrossRefGoogle Scholar
  29. 29.
    Hardorp, J., The Sun among the stars, Astron. Astrophys., 1980, vol. 91, pp. 221–232.Google Scholar
  30. 30.
    Harris, A.W., Warner, B.D., and Pravec, P., Asteroid lightcurve derived data V13.0, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2012, no. EAR-A-5-DDR-DERIVED-b-V13.0.Google Scholar
  31. 31.
    Huebner, W.F., Boice, D.C., Reitsema, H.J., Delamere, W.A., and Whipple, F.L., A model for intensity profiles of dust jets near the nucleus of Comet Halley, Icarus, 1988, vol. 76, pp. 78–88.ADSCrossRefGoogle Scholar
  32. 32.
    Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, pp. 66–80.ADSCrossRefGoogle Scholar
  33. 33.
    Kokhirova, G.I., Ivanova, O.V., Rakhmatullaeva, F.D., Khamroev, U.Kh., Buriev, A.M., and Abdulloev, S.Kh., Results of complex observations of asteroid (596) Scheila at the Sanglokh International Astronomical Observatory, Sol. Syst. Res., 2018, vol. 52, no. 6, pp. 495–504.ADSCrossRefGoogle Scholar
  34. 34.
    Kristensen, L.K., The pole of (51) Nemausa, Astron. Nachr., 1993, vol. 314, pp. 381–390.ADSCrossRefGoogle Scholar
  35. 35.
    Lewis, J.S., The temperature gradient in the solar nebula, Science, 1974, vol. 186, pp. 440–442.ADSCrossRefGoogle Scholar
  36. 36.
    Licandro, J., Campins, H., Kelley, M., Hargrove, K., Pinilla-Alonso, N., Cruikshank, D., Rivkin, A.S., and Emery, J., (65) Cybele: detection of small silicate grains, water-ice, and organics, Astron. Astrophys., 2011, vol. 525, art. ID A34.ADSCrossRefGoogle Scholar
  37. 37.
    Liou, J.-Ch., Zook, H.A., and Jackson, A.A., Radiation pressure, Poynting–Robertson drag, and solar wind drag in the restricted three-body problem, Icarus, 1995, vol. 116, pp. 186–201.ADSCrossRefGoogle Scholar
  38. 38.
    Longhi, J., Phase equilibria in the system CO2–H2O. I. New equilibrium relations at low temperatures, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 529–539.ADSCrossRefGoogle Scholar
  39. 39.
    Makalkin, A.B. and Dorofeeva, V.A., Temperature distribution in the solar nebula at successive stages of its evolution, Sol. Syst. Res., 2009, vol. 43, no. 6, pp. 508–532.ADSCrossRefGoogle Scholar
  40. 40.
    Masiero, J.R., Grav, T., Mainzer, A.K., Nugent, C.R., Bauer, J.M., Stevenson, R., and Sonnett, S., Main-belt asteroids with WISE/NEOWISE: near-infrared Albedos, Astrophys. J., 2014, vol. 791, art. ID 121.ADSCrossRefGoogle Scholar
  41. 41.
    Müller, T.G. and Blommaert, J.A.D.L., 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis, Astron. Astrophys., 2004, vol. 418, pp. 347–356.ADSCrossRefGoogle Scholar
  42. 42.
    Nesvorný, D., Vokrouhlický, D., Bottke, W.F., and Sykes, M., Physical properties of asteroid dust bands and their sources, Icarus, 2006, vol. 181, pp. 107–144.ADSCrossRefGoogle Scholar
  43. 43.
    Platonov, A.N., Priroda okraski mineralov (Nature of Color of Minerals), Kiev: Naukova Dumka, 1976.Google Scholar
  44. 44.
    Reynolds, C.M., Reddy, V., and Gaffey, M.J., Compositional study of 51 Nemausa: a possible carbonaceous chondrite-like asteroid, Proc. 40th Lunar and Planetary Science Conf., Woodlands, 2009, no. 1285.Google Scholar
  45. 45.
    Safronov, V.S. and Ziglina, I.N., Origin of the asteroid belt, Sol. Syst. Res., 1991, vol. 25, no. 2, pp. 139–146.ADSGoogle Scholar
  46. 46.
    Shepard, M.K., et al., A radar survey of M- and X-class asteroids. II. Summary and synthesis, Icarus, 2010, vol. 208, pp. 221–237.ADSCrossRefGoogle Scholar
  47. 47.
    Skorov, Yu.V., Rezac, L., Hartogh, P., Bazilevsky, A.T., and Keller, H.U., A model of short-lived outbursts on the 67P from fractured terrains, Astron. Astrophys., 2016, vol. 593, art. ID A76.ADSCrossRefGoogle Scholar
  48. 48.
    Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., IRAS Minor planet survey, in NASA Planetary Data System, Washington, DC: Natl. Aeronaut. Space Admin., 2004, no. IRAS-A-FPA-3-RDR-IMPS-V6.0.Google Scholar
  49. 49.
    Tholen, D.J., Asteroid taxonomic classifications, Proc. Conf. “Asteroids II,” Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 1139–1150.Google Scholar
  50. 50.
    Warner, B.D., Harris, A.W., and Pravec, P., The asteroid light-curve database, Icarus, 2009, vol. 202, pp. 134–146.ADSCrossRefGoogle Scholar
  51. 51.
    Werner, B., A modest success story: 779 Nina brighter than predicted, Minor Planet Bull., 1991, vol. 18, p. 16.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. V. Busarev
    • 1
    • 2
    Email author
  • M. P. Shcherbina
    • 1
  • S. I. Barabanov
    • 2
  • T. R. Irsmambetova
    • 1
  • G. I. Kokhirova
    • 3
  • U. Kh. Khamroev
    • 3
  • I. M. Khamitov
    • 4
    • 5
  • I. F. Bikmaev
    • 5
    • 6
  • R. I. Gumerov
    • 5
    • 6
  • E. N. Irtuganov
    • 5
    • 6
  • S. S. Mel’nikov
    • 5
    • 6
  1. 1.Sternberg Astronomical Institute, Moscow State UniversityMoscowRussia
  2. 2.Institute of Astronomy (INASAN), Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Astrophysics, Academy of Sciences of the Republic of TajikistanDushanbeRepublic of Tajikistan
  4. 4.TÜBİTAK National ObservatoryAntalyaTurkey
  5. 5.Kazan Federal UniversityKazanRussia
  6. 6.Academy of Sciences of the Republic of TatarstanKazanRussia

Personalised recommendations