Advertisement

Solar System Research

, Volume 53, Issue 3, pp 199–207 | Cite as

Experimental Study of the Product Composition of the Chelyabinsk Meteorite (LL5) Outgassing

  • A. V. StennikovEmail author
  • S. A. Voropaev
  • V. S. Fedulov
  • N. V. Dushenko
  • S. G. Naimushin
Article
  • 12 Downloads

Abstract

The Chelyabinsk meteorite sample of type LL5 was subjected to calcination in the specially constructed instrument in the temperature range 200–800°C in increments of 100°C. The composition of the obtained volatile constituents was examined on a chromatograph. Detected were: CO2, H2O, and N2 in concentrations of 5–40 μg/g of the sample; H2, CO, CH4, and H2S in concentrations of 0.1–2.0 μg/g. By observing changes in the selected component concentrations over time (up to 90 minutes), it was concluded that chemical reactions in the system between volatile components occur directly during outgassing.

Keywords

meteorite, outgassing early atmosphere gas chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The study was supported by the Russian Science Foundation (project no. 17-17-01279).

The authors are deeply grateful to Yakovlev Oleg Ivanovich for providing a sample of the Chelyabinsk meteorite, as well as for constructive comments when writing this work.

References

  1. 1.
    Abe, Y., Physical state of the very early Earth, Lithos, 1993, vol. 30, pp. 223–235.ADSCrossRefGoogle Scholar
  2. 2.
    Abe, Y., Protoatmospheres and surface environment of protoplanets, Earth, Moon, Planets, 2011, vol. 108, no. 1, pp. 9–14.ADSCrossRefGoogle Scholar
  3. 3.
    Abe, Y. and Matsui, T., The formation of an impact generated H2O atmosphere and its implications for the early thermal history of the Earth, J. Geophys. Res.: Planets, 1985, vol. 90, suppl., pp. 545–559.CrossRefGoogle Scholar
  4. 4.
    Bukvic, D.S., Outgassing of chondritic planets, MSc Thesis, Cambridge, MA: MIT Press, 1976.Google Scholar
  5. 5.
    Galimov, E.M., Kolotov, V.P., Nazarov, M.A., Kostitsyn, Yu.A., Kubrakova, I.V., Kononkova, N.N., Roshchina, I.A., Alexeev, V.A., Kashkarov, L.L., Badyukov, D.D., and Sevast'yanov, V.S., Analytical results for the material of the Chelyabinsk meteorite, Geochem. Int., 2013, vol. 51, no. 7, pp. 522–539.CrossRefGoogle Scholar
  6. 6.
    Gooding, J.L. and Muenow, D.W., Experimental vaporization of the Holbrook chondrite, Meteoritics, 1977, vol. 12, pp. 401–408.ADSCrossRefGoogle Scholar
  7. 7.
    Gramenitskii, E.N., Kotel'nikov, A.R., Batanova, A.M., Shchekina, T.I., and Plechov, P.Yu., Eksperimental'naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology), Moscow: Nauchnyi Mir, 2000.Google Scholar
  8. 8.
    Hashimoto, G.L., Abe, Y., and Sugita, S., The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material, J. Geophys. Res.: Planets, 2007, vol. 112, no. E05010.Google Scholar
  9. 9.
    Lange, M.A. and Ahrens, T.J., The evolution of an impactgenerated atmosphere, Icarus, 1982, vol. 51, pp. 96–120.ADSCrossRefGoogle Scholar
  10. 10.
    Lewis, J.S. and Prinn, R.G., Planets and Their Atmospheres: Origin and Evolution, New York: Academic, 1984.Google Scholar
  11. 11.
    Marchia, S., Black, B.A., Elkins- Tanton, L.T., and Bottke, W.F., Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere, Earth Planet. Sci. Lett., 2016, vol. 449, pp. 96–104.ADSCrossRefGoogle Scholar
  12. 12.
    Massol, H., Hamano, K., Tian, F., Ikoma, M., Abe, Y., Chassefiere, E., Davaille, A., Genda, H., Gudel, M., Hori, Y., Leblanc, F., Marcq, E., Sarda, P., Shematovich, V.I., Stokl, A., and Lammer, H., Formation and evolution of protoatmospheres, Space Sci. Rev., 2016, vol. 205, pp. 153–211.ADSCrossRefGoogle Scholar
  13. 13.
    Matsui, T. and Abe, Y., Impact-induced atmospheres and oceans on Earth and Venus, Nature, 1986, vol. 322, no. 6079, pp. 526–528.ADSCrossRefGoogle Scholar
  14. 14.
    Miller, S.L., A production of amino-acids under possible primitive Earth conditions, Science, 1953, vol. 9, no. 1, pp. 528–529.ADSCrossRefGoogle Scholar
  15. 15.
    Muenow, D., Keil, K., and McCoy, T.J., Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids, Meteoritics, 1995, vol. 30, pp. 639–645.ADSCrossRefGoogle Scholar
  16. 16.
    Russel, M.J., The alkaline solution to the emergence of life: energy, entropy, and early evolution, Acta Biotheor., 2007, vol. 55, no. 2, pp. 133–179.CrossRefGoogle Scholar
  17. 17.
    Schaefer, L. and Fegley, B., Jr., Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites, Icarus, 2007, vol. 186, pp. 462–483.ADSCrossRefGoogle Scholar
  18. 18.
    Tian, F., Toon, O., Pavlov, A., and De Sterck, H., A hydrogenrich early Earth atmosphere, Science, 2005, vol. 308, pp. 1014–1017.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Stennikov
    • 1
    Email author
  • S. A. Voropaev
    • 1
  • V. S. Fedulov
    • 1
  • N. V. Dushenko
    • 1
  • S. G. Naimushin
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations