Solar System Research

, Volume 52, Issue 7, pp 666–672 | Cite as

Improvement of Methods for Evaluating the Resolving Power of a Space Synthetic Aperture Radar

  • K. A. ZaninEmail author
  • I. V. Moskatinev


An improved way for determining the resolving power of a space synthetic aperture radar is proposed. The model allows one to relate the geometric and radiometric quality to characteristics of the observed object and background. Some features of the radar image during visual examination are explained. Datapath errors are taken into account.


quality indexes datapath of space synthetic aperture radar in situ linear resolution synthetic aperture radar radiometric resolution modulation transfer function radar image quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakholdin, A.V., Opticheskie mikroskopy: uchebnoe posobie (Optical Microscopes: Manual), St. Petersburg: S.-Peterb. Nats. Issled. Univ. Inf. Tekhnol., Mekh. Opt., 2012.Google Scholar
  2. Efanov, V.V., Semunkina, V.I., and Shostak, S.V., Features of ballistic design of ARKON-1 remote-sensing space system for optoelectronic earth observations, Sol. Syst. Res., 2011, vol. 45, no. 7, pp. 572–576.ADSCrossRefGoogle Scholar
  3. Evgrafov, A.E. and Pol’, V.G., To the problem on space interferometric recording of the Earth’s relief by radio-locator of synthesized aperture, Vestn. NPO im. S.A. Lavochkina, 2014, no. 4, pp. 44–49.Google Scholar
  4. Lepekhina, T.A., Nikolaev, V.I., and Tolstov, E.F., The way to determine spatial resolution of space radio antenna by means of pulse reply, Materialy V Vserossiiskoi nauchnoi konferentsii “Radiofizicheskie metody v distantsionnom zondirovanii sred,” g. Murom, 26–28 iyunya 2012 (Proc. V All-Russ. Sci. Conf. “Radiophysical Methods in Remote Survey of Media,” Murom, June 26–28, 2012), Murom: Muromsk. Inst., Vladimirsk. Gos. Univ., 2012, pp. 486–490.Google Scholar
  5. Magurin, V.G. and Tarlykov, V.A., Kogerentnaya optika: uchebn. posobie (Coherent Optics. Student’s Book), St. Petersburg: S.-Peterb. Nats. Issled. Univ. Inf. Tekhnol., Mekh. Opt., 2006.Google Scholar
  6. Maréchal, A. and Franson, M., Diffraction Structure des Images, Paris, 1960.Google Scholar
  7. Matveev, Yu.A., Lamzin, V.A., and Lamzin, V.V., Method of predictive studies of the effectiveness of spacecraft modifications with integrated subsystem replacement, Sol. Syst. Res., 2016, vol. 50, no. 7, pp. 604–610.ADSCrossRefGoogle Scholar
  8. Pitz, W., The TerraSAR-X satellite, EADS Astrium, 2009. Accessed March 2, 2017.Google Scholar
  9. Rose, A., Vision Human and Electronic, New York: Plenum, 1973.Google Scholar
  10. Zanin, K.A., Quality analysis of image geolocation for a space synthetic aperture radar, Sol. Syst. Res., 2014, vol. 48, no. 7, pp. 555–560.ADSCrossRefGoogle Scholar
  11. Zanin, K.A., Mit’kin, A.S., and Moskatin’ev, I.V., Methodological foundations of simulation for data-path from the space radio-locator with synthesized aperture, Vestn. NPO im. S.A. Lavochkina, 2016, no. 2, pp. 61–68.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Lavochkin AssociationKhimki, Moscow oblastRussia

Personalised recommendations