Advertisement

Solar System Research

, Volume 52, Issue 7, pp 636–643 | Cite as

On Increasing the Accuracy of Star Trackers to Subsecond Levels

  • A. I. ZacharovEmail author
  • N. L. Krusanova
  • I. V. Moskatiniev
  • M. E. Prohorov
  • O. Y. Stekol’shchikov
  • V. K. Sysoev
  • M. S. Tuchin
  • A. D. Yudin
Article
  • 10 Downloads

Abstract

Modern star trackers are based on photodetector arrays such as CCD or CMOS arrays. The accuracy of commercially available devices is ~1–3 arcseconds. However, the development of the space industry calls for higher orientation accuracies, which are needed in laser space communications, monitoring of near-Earth space and space debris, high-precision global mapping, and remote sensing of the Earth. The problems associated with enhancing the accuracy of modern star trackers are discussed.

Keywords

star tracker spacecraft orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avanesov, G.A., Bessonov, R.V., Kurkina, A.N., Smetanin, P.S., et al., The way to research the detecting errors of orientation parameters of high accuracy device BOKZ-VT, Materialy pyatoi Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov,” Tezisy dokladov (Proc. Fifth All-Russian Sci.-Tech. Conf. “Modern Problems of Spacecrafts Orientation and Navigation,” Abstracts of Papers), Tarusa, 2016, pp. 2–9.Google Scholar
  2. Barabanov, A.A., Milyukov, V.K., Moskatiniev, I.V., Nesterin, I.M., et al., Relativistic gravitational experiment in the Earth orbit: concept, technology, and configuration of satellite constellation, Sol. Syst. Res., 2017, vol. 51, no. 7, pp. 669–675.CrossRefGoogle Scholar
  3. Bessonov, R.V., Belichenko, M.L., Dement’ev, V., and Zavgorodnii, D.S., The way to research the detection errors of stars’ energy centers coordinates in photoreceiving matrix of star tracker, Materialy pyatoi Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov,” Tezisy dokaldov (Proc. Fifth All-Russian Sci.-Tech. Conf. “Modern Problems of Spacecrafts Orientation and Navigation,” Abstracts of Papers), Tarusa, 2016, pp. 2–15.Google Scholar
  4. Dyatlov, S.A. and Bessonov, R.V., Star tracker for spacecrafts orientation: a review, Mekh., Uprav. Inf., 2011, no. 1, pp. 11–31.Google Scholar
  5. Fedoseev, V.I. and Kolosov, M.P., Optiko-elektronnye pribory orientatsii i navigatsii kosmicheskikh apparatov (Optical-Electronic Devices for Spacecrafts Orientation and Navigation), Moscow: Logos, 2007.Google Scholar
  6. Gordienko, E.S., Ivashkin, V.V., and Simonov, A.V., Analysis of stability of orbits of artificial Lunar satellites and configuring of a Lunar satellite navigation system, Sol. Syst. Res., 2017, vol. 51, no. 7, pp. 654–668.ADSCrossRefGoogle Scholar
  7. Høg, E., Fabricius, C., Makarov, V.V., Urban, S., et al., The Tycho-2 catalogue of the 2.5 million brightest stars, Astron. Astrophys., 2000, vol. 355, pp. L27–L30.ADSGoogle Scholar
  8. Kovalevskii, Zh., Sovremennaya astrometriya (Modern Astrometry), Fryazino: Vek-2, 2004.Google Scholar
  9. Michaels, D.L. and Speed, J.F., New ball aerospace star tracker achieves high tracking accuracy for a moving star field, Proc. SPIE, 2004, vol. 5430, pp. 43–52.ADSCrossRefGoogle Scholar
  10. Podobed, V.V. and Nesterov, V.V., Obshchaya astrometriya (General Astrometry), Moscow: Nauka, 1982.Google Scholar
  11. Prokhorov, M.E., Zakharov, A.I., and Tuchin, M.S., The way to calculate optimal characteristics of optical system and matrix receiver of star tracker radiation according to performance characteristics, Mekh. Uprav. Inf., 2013, no. 13, pp. 80–90.Google Scholar
  12. Stekol’shchikov, O.Yu., Zakharov, A.I., and Prokhorov, M.E., Structure features of narrow field star tracker with mirror lens produced by Sternberg Astronomical Institute of Moscow State University, Mekh. Uprav., Inf., 2013, no. 13, pp. 69–79.Google Scholar
  13. Tuchin, M.S., Biryukov, A.V., Zakharov, A.I., and Prokhorov, M.E., The way to consider thermal generation of matrix devices with charge link as a base for increasing star tracker’s accuracy, Mekh. Uprav., Inf., 2013, no. 13, pp. 249–256.Google Scholar
  14. Zakharov, A.I. and Nikiforov, M.G., Constant and accidental errors under detecting stars photo-centers position at matrix photo-receivers, Mekh. Uprav., Inf., 2011, no. 2, pp. 280–288.Google Scholar
  15. Zakharov, A.I., Prokhorov, M.E., Tuchin, M.S., and Zhukov, A.O., Minimum star tracker specifications required to achieve a given attitude accuracy, Astrophys. Bull., 2013, vol. 68, no. 4, pp. 481–493.ADSCrossRefGoogle Scholar
  16. Zavgorodnii, D.S., Sokol’skii, M.N., Tregub, V.P., and Polishchuk, G.S., Features of lens structure of spacecrafts’ star trackers by the example of OZK-VTs, Materialy pyatoi Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov,” Tezisy dokladov (Proc. Fifth All-Russian Sci.-Tech. Conf. “Modern Problems on Spacecrafts Orientation and Navigation,” Abstracts of Papers), Tarusa, 2016, pp. 2–11.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. I. Zacharov
    • 1
    Email author
  • N. L. Krusanova
    • 1
  • I. V. Moskatiniev
    • 2
  • M. E. Prohorov
    • 1
  • O. Y. Stekol’shchikov
    • 1
  • V. K. Sysoev
    • 2
  • M. S. Tuchin
    • 1
  • A. D. Yudin
    • 2
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Lavochkin AssociationKhimki, Moscow oblastRussia

Personalised recommendations