Solar System Research

, Volume 52, Issue 7, pp 578–589 | Cite as

Software Package for the Development of Thermal Protection Systems for Spacecraft Descent into the Atmospheres of Planets

  • M. M. GolomazovEmail author
  • A. A. Ivankov


The paper presents a mathematical model and a computational algorithm and describes a programming and computing suite (PCS) for the development of thermal protection systems for spacecraft designed to descend into the atmospheres of planets. The mathematical model and the PCS are implemented based on the development of thermal protection for the descent module of the EXOMARS 2020 surface platform.


programming and computing suite descent module thermal protection trajectory heat transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barten’ev, O.V., Sovremennyi Fortran (Modern FORTRAN), Moscow: Dialog-MIFI, 2005.Google Scholar
  2. Baula, G.G., Markelova, T.V., Nikolaev, V.M., Plastinin, Yu.A., et al., Metodicheskie ukazaniya RD50-25645.114-84. Model’ polucheniya vysokotemperaturnykh gazovykh ob”emov dlya rascheta teploobmena letatel’nykh apparatov (Methodological Recommendations RD50-25645.114-84: A Model of High-Temperature Gas Volumes Radiation for Calculating Aircrafts Heat Exchange), Moscow: Izd. Standartov, 1984.Google Scholar
  3. Borisov, V.M. and Ivankov, A.A., The way to calculate radiant energy transfer under hypersonic flow round of blunt body by using R1 and R2 approximations from the method of spherical harmonics, Zh. Vychisl. Mat. Mat. Fiz., 1992, vol. 32, no. 6, pp. 952–966.MathSciNetGoogle Scholar
  4. Borisov, V.M., Golomazov, M.M., Ivankov, A.A., and Finchenko, V.S., Calculation of radiation heat transfer in problems of flow past bodies with account for heatshield coating mass loss, Fluid Dyn., 2004, vol. 39, no. 4, pp. 633–641.ADSCrossRefzbMATHGoogle Scholar
  5. Finchenko, V.S., Ivankov, A.A., Shmatov, S.I., and Mordvinkin, A.S., Preliminary results of the calculated and experimental studies of the basic aerothermodynamic parameters of the ExoMars landing module, Sol. Syst. Res., 2014, vol. 49, no. 7, pp. 557–568.ADSCrossRefGoogle Scholar
  6. Golomazov, M.M. and Finchenko, V.S., Aerodynamic design of a descent vehicle in the Martian atmosphere under the ExoMars project, Sol. Syst. Res., 2013, vol. 48, no. 7, pp. 541–548.ADSCrossRefGoogle Scholar
  7. Golomazov, M.M. and Ivankov, A.A., Computational and theoretical investigation of Mars’s atmospheric impact on the descent module “Exomars-2018” under aerodynamic deceleration, Sol. Syst. Res., 2016, vol. 50, no. 7, pp. 498–507.ADSCrossRefGoogle Scholar
  8. Golomazov, M.M. and Ivankov, A.A., How particles in the Martian atmosphere influence the thermal protection structure of the descent module EXOMARS-2, Sol. Syst. Res., 2017, vol. 51, no. 7, pp. 628–638.ADSCrossRefGoogle Scholar
  9. Ivankov, A.A., Numerical analysis of the problem of heating of the multilayer heat shield of a descending space vehicle with allowance for ablation in external and internal heat shield layers, Comput. Math. Math. Phys., 2005, vol. 45, no. 7, pp. 1235–1245.MathSciNetzbMATHGoogle Scholar
  10. Ivankov, A.A., Numerical research of filtration effect caused by gaseous products of thermal decomposition onto thermal protection of descent vehicles, Tepl. Prots. Tekh., 2012, vol. 4, no. 8, pp. 368–375.Google Scholar
  11. Khartov, V.V., Martynov, M.B., Lukiyanchikov, A.V., and Alexashkin, S.N., Conceptual design of “Exomars- 2018” Descent Module developed by federal enterprise “Lavochkin Association,” Sol. Syst. Res., 2015, vol. 49, no. 7, pp. 500–508.ADSCrossRefGoogle Scholar
  12. Kogan, M.N., Dinamika razrezhennogo gaza (Rarefied Gas Dynamics), Moscow: Nauka, 1967.Google Scholar
  13. Kudryavtsev, L.D., Kurs matematicheskogo analiza (Course of Mathematical Analysis), in 3 vols., Moscow: Vysshaya Shkola, 1988–1989.zbMATHGoogle Scholar
  14. Millour, E., Forget, F., and Lewis, S.R., Mars Climate Database v. 5.1 Manual, ESTEC Contract 11369/95/NL/JG Mars Climate Database and Physical Models. Accessed May 15, 2017.
  15. Vlasov, V.I., Gorshkov, A.B., Zalogin, G.N., Zemlyanskii, B.A., et al., Rukovodstvo dlya konstruktorov. Konvektivnyi teploobmen izdelii RKT (Handbook for Designers. Convective Heat Exchange in Rocket and Space Engineering), Zemlyanskii, B.A., Ed., Korolev: Tsentr. Nauchno-Issled. Inst. Mashinostr., 2010.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Computer-Aided DesignRussian Academy of SciencesMoscowRussia
  2. 2.Lavochkin AssociationKhimkiRussia

Personalised recommendations