Advertisement

Solar System Research

, Volume 52, Issue 6, pp 480–494 | Cite as

Ammonia in Jupiter’s Atmosphere: Spatial and Temporal Variations of the NH3 Absorption Bands at 645 and 787 Nm

  • V. G. Teifel’
  • V. D. Vdovichenko
  • P. G. Lysenko
  • A. M. Karimov
  • G. A. Kirienko
  • N. N. Bondarenko
  • V. A. Filippov
  • G. A. Kharitonova
  • A. P. Khozhenets
Article
  • 6 Downloads

Abstract

Based on the material of long-term spectrophotometric observations of Jupiter, we studied the weak absorption bands of ammonia at 645 and 878 nm, whose behavior had previously been little studied. A clearly expressed depression of ammonia absorption in the 787-nm band was found in the Northern Equatorial Belt (NEB) of Jupiter. In the Great Red Spot, this band also exhibits substantial weakening. The position of the depression in the NEB is similar to that of the enhanced brightness temperature detected in the observations of the millimeter-wave radio emission, which is considered to be a result of the reduced ammonia content in this belt. At the same time, the weakening of the 787-nm band in the Red Spot is most likely caused by the enhanced bulk density of clouds, which influences the formation of absorption bands in the multiple scattering by cloud particles. The brightness temperature in the Red Spot is relatively low, as seen from observations in the radio and thermal IR ranges. We studied the spatial and temporal variations of the 645- and 787-nm bands in five belts of Jupiter: the Equatorial Zone (EZ), both Equatorial Belts (SEB and NEB), and both Tropical Zones (STZ and NTZ). The observations covered the time interval from 2005 to 2015, i.e., almost a complete orbital period of Jupiter. These observations confirmed the systematic character of the depression of the 787-nm band in the NEB and the difference in the latitudinal variations of the 645- and 787-nm bands. The latter can be related to features of the vertical distribution of the cloud density, which has a different influence on bands of different intensity.

Keywords

Jupiter atmosphere clouds Great Red Spot spectrophotometry ammonia molecular absorption thermal radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjoraker, G.L., Wong, M.H., de Pater, I., and Ad’amkovics, M., Jupiter’s deep cloud structure revealed using Keck observations of spectrally resolved line shapes, Astrophys. J., 2015, vol. 810, no. 2, art. ID 122.Google Scholar
  2. Bondarenko, N.N., The study of the ammonia absorption band NH3 787 nm variations in the atmosphere of Jupiter, Astron. Astrophys. Trans., 2013, vol. 28, no. 2, pp. 81–86.ADSGoogle Scholar
  3. Bowles, N., Calcutt, S., Irwin, P., and Temple, J., Band parameters for self-broadened ammonia gas in the range 0.74 to 5.24 µm to support measurements of the atmosphere of the planet Jupiter, Icarus, 2008, vol. 196, pp. 612–624.ADSCrossRefGoogle Scholar
  4. Bowles, N., Private communication, 2009.Google Scholar
  5. Cochran, W.D. and Cochran, A.L., Longitudinal variability of methane and ammonia bands on Jupiter, Icarus, 1980, vol. 42, pp. 102–110.ADSCrossRefGoogle Scholar
  6. Cochran, W.D. and Cochran, A.L., Longitudinal variability of methane and ammonia bands on Jupiter. II. Temporal variations, Icarus, 1983, vol. 56, pp. 116–121.ADSCrossRefGoogle Scholar
  7. Cox, A.N., Tejfel, V.G., and Tholen, D.J., Planets and satellites, in Astrophysical Quantities, New York: Springer-Verlag, 1999, pp. 293–313.Google Scholar
  8. de Pater, I., de Dunn, D., Zahnle, K., and Romani, P.N., Reconciling Galileo probe data and ground-based radio observations of ammonia on Jupiter, Icarus, 2001, vol. 149, pp. 66–78.ADSCrossRefGoogle Scholar
  9. de Pater, I., de Sault, R.J., Butler, B., de Boer, D., and Wong, M.H., Peering through Jupiter’s clouds with radio spectral imaging—research reports gas giant planets, Science, 2016, vol. 352, no. 6290, pp. 1198–1201.ADSCrossRefGoogle Scholar
  10. Drossart, P., Roos-Serote, M., Encrenaz, Th., Lellouch, E., Baines, K.H., Carlson, R.W., Kamp, L.W., Calcutt, S., Irwin, P., Taylor, F.W., and Orton, G.S., The solar reflected component in Jupiter’s 5-micron spectra from NIMS/Galileo observations, J. Geophys. Res., 1998, vol. 103, pp. 23043–23050.ADSCrossRefGoogle Scholar
  11. Fletcher, L.N., Orton, G.S., Mousis, O., Yanamandra- Fisher, P., Parrish, P.D., Irwin, P.G.J., Edkins, E., Baines, K.H., Line, M.R., Vanzi, L., Fujiyoshi, T., and Fuse, T., Jupiter’s Great Red Spot: high-resolution thermal imaging from 1995 to 2008, Icarus, 2010, vol. 208, pp. 306–328.ADSCrossRefGoogle Scholar
  12. Fletcher, L.N., Greathouse, T.K., Orton, G.S., Sinclair, J.A., Giles, R.S., Irwin, P.J., and Encrenaz, T., Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES, Icarus, 2016, vol. 278, pp. 128–161.ADSCrossRefGoogle Scholar
  13. Giles, R.S., Fletcher, L.N., Irwin, P.G.J., Orton, G.S., and Sinclair, J.A., Ammonia in Jupiter’s troposphere from high-resolution 5 µm spectroscopy, Geophys. Res. Lett., 2017, vol. 44, no. 21, pp. 10838–10844.ADSCrossRefGoogle Scholar
  14. Giver, L.P., Boese, R.W., and Miller, J.H., Laboratory studies of the visible NH3 bands with applications to Jupiter, J. Atmos. Sci., 1969, vol. 26, pp. 941–942.ADSCrossRefGoogle Scholar
  15. Giver, L.P., Miller, J.H., and Boese, R.W., A laboratory atlas of the 5?1 NH3 absorption band at 6475 A with applications to Jupiter and Saturn, Icarus, 1975, vol. 25, pp. 34–48.ADSCrossRefGoogle Scholar
  16. Irwin, P.G.J., Bowles, N., Braude, A.S., Garland, R., and Calcutt, S., Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter, Icarus, 2018, vol. 302, pp. 426–436.ADSCrossRefGoogle Scholar
  17. Karkoschka, E., Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry, Icarus, 1998, vol. 133, pp. 134–146.ADSCrossRefGoogle Scholar
  18. Lutz, B.L. and Owen, T., The visible band of ammonia: band strengths, curves of growth, and the spatial distribution of ammonia on Jupiter, Astrophys. J., 1980, vol. 235, no. 1, pp. 285–293.ADSCrossRefGoogle Scholar
  19. Mallama, A., The old and new meanings of cloud ‘belt’ and ‘zone’: a study of Jovian and Saturnian atmospheric banding based on Hubble Space Telescope images, arXiv 1410.3337v3 [astro-ph.EP].Google Scholar
  20. Marten, A., Courtin, R., Gautier, D., and Lacombe, A., Ammonia vertical density profiles in Jupiter and Saturn from their radioelectric and infrared emissivities, Icarus, 1980, vol. 41, pp. 410–422.ADSCrossRefGoogle Scholar
  21. Moroz, V.I. and Cruikshank, D.P., Distribution of ammonia on Jupiter, J. Atmos. Sci., 1969, vol. 26, pp. 865–869.ADSCrossRefGoogle Scholar
  22. Morozhenko, A.V., Ammonia in the atmospheres of Jupiter and Saturn: absorption coefficients, Kinematics Phys. Celest. Bodies, 2009, vol. 25, no. 4, pp. 182–188.ADSCrossRefGoogle Scholar
  23. Orton, G.S., The thermal structure of Jupiter: I. Implications of pioneer 10 infrared radiometer data, Icarus, 1975a, vol. 26, pp. 125–141.ADSCrossRefGoogle Scholar
  24. Orton, G.S., The thermal structure of Jupiter: II. Observations and analysis of 8–14 micron radiation, Icarus, 1975b, vol. 26, pp. 142–158.ADSCrossRefGoogle Scholar
  25. Orton, G.S., Appleby, J.F., and Martonchik, J.V., The effect of NH3 ice particles in the Jovian atmosphere on outgoing thermal radiation, Bull. Am. Astron. Soc., 1980, vol. 12, p. 706.ADSGoogle Scholar
  26. Orton, G., Caldwell, J., and Tokunaga, A., Thermal infrared morphology of the Jovian atmosphere in 1981, Bull. Am. Astron. Soc., 1981, vol. 1, p. 735.ADSGoogle Scholar
  27. Orton, G.S., Hansen, C., Janssen, M.A., Bolton, S., Brown, S., Eichstaedt, G., Rogers, J., Ingersoll, A.P., Li, Ch., Momary, T.W., Tabataba-Vakili, F., Fletcher, L., Fujiyoshi, T., Greathouse, T.K., Kasaba, Y., et al., and Juno-Support Observing Team, Characterization of the great red spot from observations by Juno and the Earth-based supporting campaign, Proc. 49th DPS AAS Meeting of American Astronomical Society., Knoxville, TN, 2017, no. 205.2.Google Scholar
  28. Rogers, J.H., Akutsu, T., and Orton, G.S., Jupiter in 2000/2001 part II: infrared and ultraviolet wavelengths–a review of multispectral imaging of the Jovian atmosphere, J. Br. Astron. Assoc., 2004, vol. 114, no. 6, pp. 313–330.ADSGoogle Scholar
  29. Russell, C.T., Caldwell, J.J., de Pater, I., Goguen, J., Klein, M.J., Lutz, B.L., Schneider, N.M., Sinton, W.M., and West, R.A., International Jupiter watch: a program to study the time variability of the Jovian system, Adv. Space Res., 1990, vol. 10, no. 1, pp. 239–242.ADSCrossRefGoogle Scholar
  30. Showman, A.P. and de Pater, I., Dynamical implications of Jupiter’s tropospheric ammonia abundance, Icarus, 2005, vol. 174, pp. 192–204.ADSCrossRefGoogle Scholar
  31. Teifel’, V.G., To the problem on photometrical properties of Jupiter Great Red Spot, Astron. Zh., 1964, vol. 41, no. 3, pp. 531–538.ADSGoogle Scholar
  32. Teifel’, V.G., Spectrophotometry of Jupiter Great Red Spot, Tr. Astrofiz. Inst., Akad. Nauk Kaz. SSR, 1967, vol. 9, pp. 52–58.Google Scholar
  33. Tejfel, V.G., Karimov, A.M., and Vdovichenko, V.D., Strange latitudinal variations of the ammonia absorption on Jupiter, Bull. Am. Astron. Soc., 2005a, vol. 37, no. 3, p. 682.ADSGoogle Scholar
  34. Tejfel, V.G., Vdovichenko, V.D., Kirienko, G.A., Kharitonova, G.A., Sinjaeva, N.V., and Karimov, A.M., Spatially resolved variation in the methane and ammonia absorption in the atmosphtere of Jupiter, Astron. Astrophys. Trans., 2005b, vol. 24, no. 4, pp. 359–363.ADSCrossRefGoogle Scholar
  35. Tejfel, V.G., Vdovichenko, V.D., Kirienko, G.A., and Kharitonova, G.A., Spectrophotometric study of the changes on Jupiter in 2009–2011, Proc. 44th Lunar and Planet. Sci. Conf., Woodlands, 2013, no. 1205, p. 2.Google Scholar
  36. Vdovichenko, V.D., Kirienko, G.A., Lysenko, P.G., and Teifel’, V.G., Features of the Jupiter Great Red Spot in methane absorption bands, Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.-Mat., 2014, no. 4, pp. 77–84.Google Scholar
  37. Vdovichenko, V.D., Kirienko, G.A., and Lysenko, P.G., Methane-ammonia absorption at Jupiter during 2015 visibility season. II Equatorial and tropical zones, Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.-Mat., 2015, no. 4, pp. 87–90.Google Scholar
  38. Vdovichenko, V.D. and Kirienko, G.A., Ammonia absorption asymmetry at Jupiter northern and southern hemispheres for 2004–2016 years, Izv. Nats. Akad. Nauk Resp. Kaz., Ser. Fiz.-Mat., 2017, no. 4, pp. 170–178.Google Scholar
  39. Vid’machenko, A.P., Minyailo, N.F., and Steklov, A.F., Possible periods of activity at Jupiter. Seasons?, Pis’ma Astron. Zh., 1984, vol. 10, no. 9, pp. 691–695.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. G. Teifel’
    • 1
  • V. D. Vdovichenko
    • 1
  • P. G. Lysenko
    • 1
  • A. M. Karimov
    • 1
  • G. A. Kirienko
    • 1
  • N. N. Bondarenko
    • 1
  • V. A. Filippov
    • 1
  • G. A. Kharitonova
    • 1
  • A. P. Khozhenets
    • 1
  1. 1.Fesenkov Astrophysical InstituteAcademy of Sciences of KazakhstanAlmatyKazakhstan

Personalised recommendations