Solar System Research

, Volume 52, Issue 6, pp 467–479 | Cite as

Geochemical Constraints on the Cold and Hot Models of the Moon’s Interior: 1–Bulk Composition

  • O. L. KuskovEmail author
  • E. V. Kronrod
  • V. A. Kronrod


The variations of the bulk composition of the silicate Moon (crust + mantle = Bulk Silicate Moon, BSM) depending on the thermal state are explored based on the joint inversion of gravitational, seismic, and petrologic data within the Na2O–TiO2–CaO–FeO–MgO–Al2O3–SiO2 system. The mantle bulk temperature Tmean determining the mineral composition and physical properties of the Moon is adopted as the integral characteristic of thermal state. By parameter Tmean, all thermal models of the Moon can be conventionally broken down into the “cold” with Tmean ~ 690–860°C and the “hot” with Tmean ~ 925–1075°C. The estimations of refractory oxide abundance in lunar rocks depending on the thermal state are included in two different groups. Cold models of BSM are comparable by the bulk content of Al2O3 ~ 3.0–4.6 wt % to those for the silicate Earth (Bulk Silicate Earth, BSE), while hot models of BSM are significantly enriched with Al2O3 ~ 5.1–7.3 wt % (Al2O3 ~ 1.2–1.7 × BSE) as compared with BSE. On the contrary, independent of the temperature distribution, both types of BSM models are characterized by nearly constant values of bulk concentrations of FeO ~ 12–13 wt % and magnesian number MG# 80–81.5 (MG# = [MgO/(MgO + FeO) × 100]), which differ markedly from those for BSE (FeO ~ 8% and MG# 89). It means that for all possible temperature distributions, the silicate fraction of the Moon is FeO-enriched and MgO-depleted in relation to BSE. These arguments discard the possibility of the Moon’s formation out of the material of the Earth’s primitive mantle. In spite of the almost complete coincidence of the isotopic systems, this apparently undeniable fact has no adequate explanation in the existing canonical models of the Moon’s origin and should result in additional constraints on the dynamic processes in models of the formation of the Earth–Moon system. However, the problem of the similarity of and/or difference between compositions of the Moon and the Earth regarding the abundance of refractory elements, which is very important for the geochemistry of the Moon and the Earth’s mantle, remains unresolved and requires further study.


the Moon interior chemical composition temperature mantle core 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, J.A. and Grove, T.L., Experimental petrology of the Apollo 15 group a green glasses: melting primordial lunar mantle and magma ocean cumulate assimilation, Geochim. Cosmochim. Acta, 2013, vol. 106, pp. 216–230.ADSCrossRefGoogle Scholar
  2. Barr, A.C., On the origin of Earth’s Moon, J. Geophys. Res., 2016, vol. 121, pp. 1573–1601. doi 10.1002/2016JE005098CrossRefGoogle Scholar
  3. BVSP, Basaltic Volcanism Study Project. Basaltic Volcanism on the Terrestrial Planets, New York: Pergamon, 1981.Google Scholar
  4. Dauphas, N., Burkhardt, C., Warren, P.H., and Fang-Zhen, T., Geochemical arguments for an Earth-like Moon-forming impactor, Philos. Trans. R. Soc., A, 2014, vol. 372, p. 20130244.ADSCrossRefGoogle Scholar
  5. Demidova, S.I., Nazarov, M.A., Lorenz, C.A., Kurat, G., Brandstätter, F., and Ntaflos, Th., Chemical composition of lunar meteorites and the lunar crust, Petrology, 2007, vol. 15, pp. 386–408.CrossRefGoogle Scholar
  6. Discussion Meeting Issue ‘Origin of the Moon: Challenges and Prospects’, organized and edited by David J. Stevenson and Alex N. Halliday, Philos. Trans. R. Soc., A, 2014, vol. 372.
  7. Elardo, S.M., Draper, D.S., and Shearer, C.K., Jr., Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 3024–3045.ADSCrossRefGoogle Scholar
  8. Elkins-Tanton, L.T., Burgess, S., and Yin, Q.-Z., The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology, Earth Planet. Sci. Lett., 2011, vol. 304, pp. 326–336.ADSCrossRefGoogle Scholar
  9. Fabrichnaya, O.B. and Kuskov, O.L., Constitution of the mantle. 1. Phase relations in the FeO-MgO-SiO2 system at 10–30 GPa, Phys. Earth Planet. Int., 1991, vol. 69, pp. 56–71.ADSCrossRefGoogle Scholar
  10. Gagnepain-Beyneix, J., Lognonné, P., Chenet, H., Lombardi, D., and Spohn, T., A seismic model of the lunar mantle and constraints on temperature and mineralogy, Phys. Earth Planet. Int., 2006, vol. 159, pp. 140–166.ADSCrossRefGoogle Scholar
  11. Galimov, E.M., Formation of the Moon and the Earth from a common supraplanetary gas-dust cloud (lecture presented at the XIX All-Russia Symposium on Isotope Geochemistry on November 16, 2010), Geochem. Int., 2011, vol. 49, no. 6, pp. 537–555.CrossRefGoogle Scholar
  12. Galimov, E.M. and Krivtsov, A.M., Origin of the Moon. New Concept. Geochemistry and Dynamics, Berlin: De Gruyter, 2012.CrossRefzbMATHGoogle Scholar
  13. Garcia, R.F., Gagnepain-Beyneix, J., Chevrot, S., and Lognonné, P., Erratum to “Very Preliminary Reference Moon Model”, by R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné [Phys. Earth Planet. Inter. 188 (2011) 96–113], Phys. Earth Planet. Int., 2012, vol. 202–203, pp. 89–91.ADSCrossRefGoogle Scholar
  14. Grimm, R.E., Geophysical constraints on the lunar Procellarum KREEP Terrane, J. Geophys. Res. Planets, 2013, vol. 118, pp. 768–777. doi 10.1029/2012JE004114ADSCrossRefGoogle Scholar
  15. Gudkova, T.V. and Raevskiy, S.N., Spectrum of the free oscillations of the Moon, Sol. Syst. Res., 2013, vol. 47, no. 1, pp. 11–19.ADSCrossRefGoogle Scholar
  16. Gudkova, T.V., Lognonné, P., Zharkov, V.N., and Raevsky, S.N., On the scientific aims of the MISS seismic experiment, Sol. Syst. Res., 2014, vol. 48, no. 1, pp. 11–21.ADSCrossRefGoogle Scholar
  17. Hess, P.C. and Parmentier, E.M., A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism, Earth Planet. Sci. Lett., 1995, vol. 134, pp. 501–514.ADSCrossRefGoogle Scholar
  18. Hirschmann, M.M., Mantle solidus: experimental constrain and the effects of peridotite composition, Geochem. Geophys. Geosyst., 2000, vol. 1, art. ID. 2000GC000070.Google Scholar
  19. Hood, L.L. and Jones, J.H., Geophysical constraints on lunar bulk composition and structure: a reassessment, J. Geophys. Res.: Planets, 1987, vol. 92, pp. 396–410.ADSCrossRefGoogle Scholar
  20. Ishihara, Y., Goossens, S., Matsumoto, K., Noda, H., Araki, H., Namiki, N., Hanada, H., Iwata, T., Tazawa, S., and Sasaki, S., Crustal thickness of the Moon: implications for farside basin structures, Geophys. Rev. Lett., 2009, vol. 36, p. L19202. doi 10.1029/2009GL039708ADSCrossRefGoogle Scholar
  21. Jolliff, B.L., Korotev, R.L., and Zeigler, R.A., Basin excavation, lower crust composition, and bulk Moon mass balance in light of a thin crust, Proc. 44th Lunar and Planet. Sci. Conf., Woodlands, 2013.Google Scholar
  22. Jones, J.H. and Delano, J.W., A three component model for the bulk composition of the Moon, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 513–527.ADSCrossRefGoogle Scholar
  23. Keihm, S.J. and Langseth, M.G., Lunar thermal regime to 300 km, Proc. 8th Lunar Sci. Conf., Houston, 1977, pp. 499–514.Google Scholar
  24. Khan, A., Maclennan, J., Taylor, S.R., and Connolly, J.A.D., Are the Earth and the Moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling, J. Geophys. Res., 2006a, vol. 111, p. E05005. doi 10.1029/2005JE002608ADSGoogle Scholar
  25. Khan, A., Connolly, J.A.D., Olsen, N., and Mosegaard, K., Constraining the composition and thermal state of the Moon from an inversion of electromagnetic lunar dayside transfer functions, Earth Planet. Sci. Lett., 2006b, vol. 248, pp. 579–598. doi 10.1016/j.epsl.2006.04.008ADSCrossRefGoogle Scholar
  26. Khan, A., Connolly, J.A.D., Maclennan, J., and Mosegaard, K., Joint inversion of seismic and gravity data for lunar composition and thermal state, Geophys. J. Int., 2007, vol. 168, pp. 243–258.ADSCrossRefGoogle Scholar
  27. Khan, A., Pommier, A., Neumann, G., and Mosegaard, K., The lunar moho and the internal structure of the Moon: a geophysical perspective, Tectonophys, 2013, vol. 609, pp. 331–352. doi 10.1016/j.tecto.2013.02.024CrossRefGoogle Scholar
  28. Khan, A., Liebske, C., Rozel, A., Rivoldini, A., Nimmo, F., Connolly, J.A.D., and Giardini, D., A geophysical perspective on the bulk composition of Mars, J. Geophys. Res.: Planets, 2018, vol. 123, no. 2, pp. 575–611/doi 10.1002/2017JE005371ADSCrossRefGoogle Scholar
  29. Kronrod, V.A. and Kuskov, O.L., Inversion of seismic and gravity data for the composition and core sizes of the Moon, Izv. Phys. Solid Earth, 2011, vol. 47, pp. 711–730.ADSCrossRefGoogle Scholar
  30. Kronrod, V.A., Kronrod, E.V., and Kuskov, O.L., Constraints on the thermal regime and uranium content in the moon: evidence from seismic data, Dokl. Earth Sci., 2014, vol. 455, no. 2, pp. 485–489.ADSCrossRefGoogle Scholar
  31. Kuskov, O.L., Galimzyanov, R.F., Truskinovsky, L.M., and Pil’chenko, V.A., Reliability of thermodynamic calculations of chemical and phase-equilibria at high-pressures and temperatures, Geokhimiya, 1983, no. 6, pp. 849–871.Google Scholar
  32. Kuskov, O.L., Constitution of the Moon: 4. composition of the mantle from seismic data, Phys. Earth Planet. Int., 1997, vol. 102, pp. 239–257.ADSCrossRefGoogle Scholar
  33. Kuskov, O.L. and Kronrod, V.A., A model of the chemical differentiation of the Moon, Petrology, 1998, vol. 6, pp. 564–582.Google Scholar
  34. Kuskov, O.L. and Kronrod, V.A., Resemblance and difference between constitution of the Moon and Io, Planet. Space Sci., 2000, vol. 48, pp. 717–726.ADSCrossRefGoogle Scholar
  35. Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Systems of Jupiter and Saturn: Formation, Composition and Internal Structure of Large Satellites), Moscow: LKI, 2009a.Google Scholar
  36. Kuskov, O.L. and Kronrod, V.A., Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data, Izv. Phys. Solid Earth, 2009b, vol. 45 P, pp. 753–768.ADSCrossRefGoogle Scholar
  37. Kuskov, O.L., Kronrod, V.A., and Kronrod, E.V., Thermochemical constraints on the interior structure and composition of the lunar mantle, Phys. Earth Planet. Int., 2014a, vol. 235, pp. 84–95. doi 10.1016/j.pepi.2014.07.011ADSCrossRefGoogle Scholar
  38. Kuskov, O.L., Kronrod, V.A., Prokofyev, A.A., and Pavlenkova, N.I., Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from longrange seismic profiles, Tectonophys, 2014b, vol. 615–616, pp. 154–166. doi 10.1016/j.tecto.2014.01.006CrossRefGoogle Scholar
  39. Kuskov, O.L. and Belashchenko, D.K., Thermodynamic properties of Fe-S alloys from molecular dynamics modeling: implications for the lunar fluid core, Phys. Earth Planet. Int., 2016, vol. 258, pp. 43–50. doi 10.1016/j.pepi.2016.07.006ADSCrossRefGoogle Scholar
  40. Lognonné, P., Gagnepain-Beyneix, J., and Chenet, H., A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon, Earth Planet. Sci. Lett., 2003, vol. 211, pp. 27–44.ADSCrossRefGoogle Scholar
  41. Lognonné, P., Planetary seismology, Annu. Rev. Earth Planet, 2005, vol. 33, pp. 571–604.ADSCrossRefGoogle Scholar
  42. Longhi, J., Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 5919–5934.ADSCrossRefGoogle Scholar
  43. Luna—shag k tekhnologiyam osvoeniya Solnechnoi sistemy (The Moon is the Step to Technologies for Solar System Development), Legostaev, V.P. and Lopot, V.A., Eds., Moscow: Energiya, 2011.Google Scholar
  44. Marov, M.Ya., Kosmos: ot Solnechnoi sistemy vglub’ Vselennoi (Space: from Solar System inside the Universe), Moscow: Fizmatlit, 2016.Google Scholar
  45. McDonough, W.F., Constraints on the composition of the continental lithospheric mantle, Earth Planet. Sci. Lett., 1990, vol. 101, pp. 1–18.ADSCrossRefGoogle Scholar
  46. Meier, M.M.M., Reufer, A., and Wieler, R., On the origin and composition of Theia: constraints from new models of the Giant Impact, Icarus, 2014, vol. 242, pp. 316–328.ADSCrossRefGoogle Scholar
  47. Morgan, J.W., Hertogen, J., and Anders, E., The Moon: composition determined by nebula processes, Moon Planets, 1978, vol. 18, pp. 465–478.ADSCrossRefGoogle Scholar
  48. Nakamura, Y., Seismic velocity structure of the lunar mantle, J. Geophys. Res., 1983, vol. 88, pp. 677–686.ADSCrossRefGoogle Scholar
  49. O’Neill, H.St.C., The origin of the Moon and the early history of the Earth—a chemical model. Part 1: the Moon, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1135–1157.ADSCrossRefGoogle Scholar
  50. Pechernikova, G.V., Feeding zone of increasing planet and the problem on Moon formation, Din. Protsessy Geosferakh, 2014, no. 6, pp. 154–162.Google Scholar
  51. Riner, M.A., Bina, C.R., Robinson, M.S., and Desch, S.J., Internal structure of Mercury: implications of a molten core, J. Geophys. Res., 2008, vol. 113, p. E08013. doi 10.1029/2007JE002993ADSCrossRefGoogle Scholar
  52. Ringwood, A.E. and Essene, E., Petrogenesis of Apollo 11 basalts, internal constitution and origin of the Moon, Proc. Apollo 11th Lunar Sci. Conf., New York, NY: Pergamon, 1970, vol. 1, pp. 769–799.ADSGoogle Scholar
  53. Ringwood, A.E., Basaltic magmatism and the bulk composition of the Moon. I. Major and heat-producing elements, Moon, 1977, vol. 16, pp. 389–423.ADSCrossRefGoogle Scholar
  54. Sambridge, M. and Mosegaard, K., Monte Carlo methods in geophysical inverse problems, Rev. Geophys., 2002, vol. 40, pp. 1–29.CrossRefzbMATHGoogle Scholar
  55. Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E., Longhi, J., Elkins-Tanton, L.T., Neal, C.R., Antonenko, I., Canup, R.M., Halliday, A.N., Grove, T.L., Hager, B.H., Lee, D.C., and Wiechert, U., Thermal and magmatic evolution of the Moon, in New Views of The Moon (Reviews in Mineralogy and Geochemistry), Berlin: de Gruyter, 2006, vol. 60, pp. 365–518.Google Scholar
  56. Snyder, G.A., Taylor, L.A., and Neal, C.R., A chemical model for generating the source of mare basalts: combined equillibrium and fractional crystallization of the lunar magmasphere, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3809–3823.ADSCrossRefGoogle Scholar
  57. Sossi, P.A. and Moynier, F., Chemical and isotopic kinship of iron in the Earth and Moon deduced from the lunar Mg-Suite, Earth Planet. Sci. Lett., 2017, vol. 471, pp. 125–135. doi 10.1016/j.epsl.2017.04.029ADSCrossRefGoogle Scholar
  58. Svetsov, V.V., Pechernikova, G.V., and Vityazev, A.V., A model of Moon formation from Ejecta of macroimpacts on the Earth, Proc. 43rd Lunar Planet. Sci. Conf., Woodlands, 2012.Google Scholar
  59. Taylor, S.R., Planetary Science: a Lunar Perspective, Houston: Lunar Planet. Inst., 1982.Google Scholar
  60. Taylor, S.R., Taylor, G.J., and Taylor, L.A., The Moon: a Taylor perspective, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 594–598.CrossRefzbMATHGoogle Scholar
  61. Taylor, R., The Moon, Acta Geochim., 2016, vol. 35, pp. 1–13. doi 10.1007/s11631-015-0080-4CrossRefGoogle Scholar
  62. Wänke, H. and Dreibus, G., Geochemical evidence for the formation of the Moon by impact induced fission of the proto-Earth, in Origin of the Moon, Hartmann, W.K., Ed., Houston: Lunar Planet. Inst., 1986, pp. 649–672.Google Scholar
  63. Warren, P.H. and Rasmussen, K.L., Megaregolith insulation, internal temperatures and bulk uranium content of the Moon, J. Geophys. Res.: Solid Earth, 1987, vol. 92, no. 5, pp. 3453–3465.CrossRefGoogle Scholar
  64. Warren, P.H., ‘New’ lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon, Meteorit. Planet. Sci., 2005, vol. 40, pp. 477–506.ADSCrossRefGoogle Scholar
  65. Wegener A. The origin of lunar craters, Moon, 1975, vol. 14, no. 2, pp. 211–236.ADSCrossRefGoogle Scholar
  66. Wieczorek, M.A., Jolliff, B.J., Khan, A., Pritchard, M.E., Weiss, B.J., Williams, J.G., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S., Hawke, B.R., Peterson, C., Gillis, J.J., and Bussey, B., The constitution and structure of the lunar interior, in New Views of The Moon (Reviews in Mineralogy and Geochemistry), Berlin: de Gruyter, 2006, vol. 60, pp. 221–364.Google Scholar
  67. Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., and Zuber, M.T., The crust of the Moon as seen by GRAIL, Science, 2013, vol. 339, no. 6120, pp. 671–675.ADSCrossRefGoogle Scholar
  68. Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D-N., Lemoine, F.G., Goossen, S., Mazarico, E., Nimmo, F., Weber, R.C., Asmar, S.W., Melosh, H.J., Neumann, G.A., Phillips, R.J., Smith, D.E., et al., Lunar interior properties from the GRAIL mission, J. Geophys. Res.: Planets, 2014, vol. 119, no. 7. doi 10.1002/2013JE004559Google Scholar
  69. Zelenyi, L.M., Khartov, V.V., Mitrofanov, I.G., and Dolgopolov, V.P., Moon: research and development. Yesterday, today, tomorrow, the day after tomorrow, Priroda (Moscow), 2012, no. 1, pp. 23–29.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations