Solar System Research

, Volume 52, Issue 2, pp 115–122 | Cite as

Diurnal Temperature Regime in the Regolith Surface Layer of the Lagado Planitia Region on Phobos: Model Predictions for Different Seasons

Article
  • 4 Downloads

Abstract

The paper contains the data on the thermal and physical characteristic of the surface regolith of the Martian satellite Phobos obtained from the spaceborne remote sensing (with the Mariner 9, Viking, and Mars Global Surveyor orbiters and the Phobos-2 spacecraft) and the results of the numerical modeling of the thermal regime in the surface regolith (on diurnal and seasonal scales) performed for the prospective landing site in the Lagado Planitia region located in the anti-Martian hemisphere of Phobos.

Keywords

Phobos regolith diurnal temperatures eclipses of Phobos by Mars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, M. and McEwen, M., A post-Pathfinder evaluation of areocentric solar coordinates with improved timing recipes for Mars seasonal/diurnal climate studies, Planet. Space Sci., 2000, vol. 48, pp. 215–235.ADSCrossRefGoogle Scholar
  2. Archinal, B.A., A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., et al., Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009 Special Report, Celest. Mech. Dyn. Astron., 2011, vol. 109, pp. 101–135. doi doi 10.1007/s10569-010-9320-4ADSCrossRefMATHGoogle Scholar
  3. Bazilevsky, A.T. and Shingareva, T.V., The choice and characterization of the Phobos–Grunt landing site, Sol. Syst. Res., 2010, vol. 44, no. 1, pp. 38–43.ADSCrossRefGoogle Scholar
  4. Bibring, J.-P., Soufflot, A., Berthé, M., Langevin, Y., Gondet, B., Drossart, P., Bouyé, M., Combes, M., Puget, P., Semery, A., Bellucci, G., Formisano, V., Moroz, V., Kottsov, V., et al., OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité, in Mars Express: The Scientific Payload, Noordwijk: Eur. Space Agency, 2004, vol. 1240, pp. 37–49.ADSGoogle Scholar
  5. Fraeman, A.A., Arvidson, R.E., Gondet, B., Bibring, J.-P., Murchie, S.L., Choo, T., Hamm, D.C., and Manaud, N., Photometric properties of Phobos derived from CRISM and OMEGA observations, 2010 AGU Fall Meeting, Washington: Am. Geophys. Union, 2010, no. P52B-01.Google Scholar
  6. Gatley, I., Kieffer, H., Miner, E., and Neugebauer, G., Infrared observation of Phobos from MARINER 9, Astron. J., 1974, vol. 190, pp. 497–503.ADSCrossRefGoogle Scholar
  7. Giuranna, M., Roush, T.L., Duxbury, T., Hogan, R.C., Carli, C., Geminale, A., and Formisano, V., Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos, Planet. Space Sci., 2011. doi 10.1016/j.pss.2011.01.019Google Scholar
  8. Ksanfomality, L., Murchie, S., Britt, D., Duxbury, T., Fisher, P., Goroshkova, N., Head, J., Kuhrt, E., Moroz, V., Murray, B., Nikitin, G., Petrova, E., Pieters, C., Soufflot, A., Zharkov, A., and Zhukov, B., Phobos: spectrophotometry between 0.3 and 0.6 μm and IR-radiometry, Planet. Space Sci., 1991, vol. 39, pp. 31l–326.CrossRefGoogle Scholar
  9. Kührt, E. and Giese, B., A thermal model of the Martian satellites, Icarus, 1989, vol. 81, pp. 102–112.ADSCrossRefGoogle Scholar
  10. Kührt, E., Giese, B., Keller, H.U., and Ksanfomality, L.V., Interpretation of the KRFM-infrared measurements of Phobos, Icarus, 1992, vol. 96, pp. 213–218.ADSCrossRefGoogle Scholar
  11. Kulikovskii, P.G., Spravochnik lyubitelya astronomii (Handbook for Astronomy Amateur), Moscow: Fizmatgiz, 1961.Google Scholar
  12. Kuzmin, R.O. and Zabalueva, E.V., The temperature regime of the surface layer of the Phobos regolith in the region of the potential Fobos–Grunt space station landing site, Sol. Syst. Res., 2003, vol. 37, no. 6, pp. 480–488.ADSCrossRefGoogle Scholar
  13. Lunine, J.I., Negebauer, G., and Jakosky, B., Infrared observations of Phobos and Deimos from Viking, J. Geophys. Res., 1982, vol. 87, p. 10297.ADSCrossRefGoogle Scholar
  14. Nadezhdina, I.E. and Zubarev, A.E., Formation of a reference coordinate network as a basis for studying the physical parameters of Phobos, Sol. Syst. Res., 2014, vol. 48, no. 4, pp. 269–278.ADSCrossRefGoogle Scholar
  15. Pilbeam, C.C. and Vaisnys, J.R., Contact thermal conductivity in lunar aggregates, J. Geophys. Res., 1973, vol. 78, no. 23, pp. 5233–5236.ADSCrossRefGoogle Scholar
  16. Simonelli, D.P., Wisz, M., Switala, A., Adinolfi, D., Veverka, J., Thomas, P.C., and Helfenstein, P., Photometric properities of Phobos surface materials from Viking images, Icarus, 1998, vol. 131, pp. 52–77.ADSCrossRefGoogle Scholar
  17. Wählisch, M., Willner, K., Oberst, J., Matz, K.-D., Scholten, F., Roatsch, T., Hoffmann, H., Semm, S., and Neukum, G., A new topographic image atlas of Phobos, Earth Planet. Sci. Lett., 2010, vol. 294, pp. 547–553.ADSCrossRefGoogle Scholar
  18. Willner, K., Shi, X., and Oberst, J., Phobos shape and topography models, Planet. Space Sci., 2014, vol. 102, pp. 51–59. http://dx.doi.org/. doi 10.1016/j.pss.2013.07.006ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations