Solar System Research

, Volume 52, Issue 2, pp 87–97 | Cite as

Steepness of Slopes at the Luna-Glob Landing Sites: Estimating by the Shaded Area Percentage in the LROC NAC Images

  • S. S. Krasilnikov
  • A. T. Basilevsky
  • M. A. Ivanov
  • A. M. Abdrakhimov
  • A. A. Kokhanov
Article
  • 5 Downloads

Abstract

The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe (Luna-25) given the baseline of the span between the landing pads (~3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°–74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°–10°, 10°–15°, 15°–20°, and >20°.

Keywords

Moon Luna-Glob Luna-25 landing sites LROC NAC slope slope steepness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdrakhimov, A.M., Basilevsky, A.T., Ivanov, M.A., Kokhanov, A.A., Karachevtseva, I.P., and Head, J.W., Occurrence probability of slopes on the lunar surface: estimate by the shaded area percentage in the LROC NAC images, Sol. Syst. Res., 2015, vol. 49, no. 5, pp. 285–294. doi 10.7868/S0320930X15050011ADSCrossRefGoogle Scholar
  2. Burke, J.D., Merits of lunar polar base location, in Lunar Bases and Space Activities of the 21st Century, Mendel, W.W., Ed., Houston: Lunar Planet. Inst., 1985, pp. 77–84.Google Scholar
  3. Djachkova, M.V., Litvak, M.L., Mitrofanov, I.G., and Sanin, A.B., Selection of Luna-25 landing sites in the South polar region of the Moon, Sol. Syst. Res., 2017, vol. 51, no. 3, pp. 185–195.ADSCrossRefGoogle Scholar
  4. Eggleton, R.E. and Schaber, G.G., Photogeology: Part B: Cayley Formation Interpreted as Basin Ejecta. Apollo-16 Preliminary Science Report (NASA SP 315), Washington: Natl. Aeronaut. Space Admin., 1972, vol. 315, pp. 29-7–29-16.Google Scholar
  5. Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., and Lawrence, D.J., Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles, Science, 1998, vol. 281, pp. 1496–1500.ADSCrossRefGoogle Scholar
  6. Ivanov, M.A., Hiesinger, H., Abdrakhimov, A.M., Basilevsky, A.T., Head, J.W., Pasckert, J.-H., Bauch, K., van der Bogert, C.H., Gläser, P., and Kohanov, A., Landing site selection for Luna-Glob mission in crater Boguslawsky, Planet. Space Sci., 2015, vol. 117, pp. 45–63.ADSCrossRefGoogle Scholar
  7. Ivanov, M.A., Abdrakhimov, A.M., Basilevsky, A.T., Demidov, N.E., Djachkova, M.V., Guseva, E.N., Head, J.W., Hiesinger, H., Kohanov, A.A., Krasilnikov, S.S., and Mitrofanov, I.G., Geological characterization of the three high-priority landing sites for the Luna-Glob mission, Planet. Space Sci., 2017 (in press)Google Scholar
  8. Karachevtseva, I., Oberst, J., Scholten, F., Shingareva, K., Cherepanova, E., Gusakova, E., Haase, I., Peters, O., Plescia, J., and Robinson, M., Cartography of the Lunokhod-1 landing site and traverse from LRO image and stereo topographic data, Planet. Space Sci., 2013, vol. 85, pp. 175–187. http://dx.org/10.1016/j.pss.2013.06.002.ADSCrossRefGoogle Scholar
  9. Li, S., Jiang, X., and Tao, T., Guidance summary and assessment of the Chang’e-3 powered descent and landing, J. Spacecr. Rockets, 2016, vol. 53, no. 2, pp. 258–277. doi 10.2514/1.A33208ADSCrossRefGoogle Scholar
  10. Marov, M.Ya., Basilevsky, A.T., Ivanov, M.A., Abdrakhimov, A.M., and Guseva, E.N., Nauchno-inzhenernoeobosnovanie vybora mest posadki v raione yuzhnogo polyusa Luny. Otchet (Scientific-Engineering Substantiation for the Selection of Landing Sites in the Region of the Southern Pole of the Moon: A Report), Moscow: Inst. Geokhim. Anal. Khim., Ross. Akad. Nauk, 2013.Google Scholar
  11. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., et al., Hydrogen mapping of the lunar South Pole using the LRO Neutron Detector Experiment LEND, Science, 2010, vol. 330, pp. 483–486.ADSCrossRefGoogle Scholar
  12. Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., et al., Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 2010, vol. 150, nos. 1–4, pp. 81–124.ADSCrossRefGoogle Scholar
  13. Smith, D.E., Zuber, M.T., Jackson, G.B., Cavanaugh, J.F., Neumann, G.A., Riris, H., Sun X., Zellar, R.S., Coltharp, C., Connelly, J., Katz, R.B., Kleyner, I., Liiva, P., Matuszeski, A., Mazarico, E.M., et al., The Lunar Orbiter laser altimeter investigation on the Lunar Reconnaissance Orbiter mission, Space Sci. Rev., 2010, vol. 150, pp. 209–241. doi 10.1007/s11214-009-9512-yADSCrossRefGoogle Scholar
  14. Zelenyi, L., Milestones of the Russian space science program for the decade 2016–2025, The Seventh Moscow Solar System Symp., 7M-S3, Moscow, Russia, October 10–14, 2016, Moscow: Space research institute, 2016, no. 7MS3-OS-01.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. S. Krasilnikov
    • 1
  • A. T. Basilevsky
    • 1
  • M. A. Ivanov
    • 1
  • A. M. Abdrakhimov
    • 1
  • A. A. Kokhanov
    • 2
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State University of Geodesy and CartographyMoscowRussia

Personalised recommendations